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ABSTRACT

Recently, unsupervised graph representation learning has attracted considerable attention through ef-
fectively encoding graph-structured data without semantic annotations. To accelerate its training, noise
contrastive estimation (NCE) samples uniformly negative examples to fit an unnormalized graph model.
However, this uniform sampling strategy may easily lead to slow convergence, even the vanishing gra-
dient problem. In this paper, we theoretically show that sampling those hard negatives close to the cur-
rent anchor can relieve the above difficulties. With this finding, we then propose an Adaptive Negative
Sampling strategy, namely AdaNS, which efficiently samples the hard negatives from the mixing distribu-
tion regarding the dimensional elements of the current node representation. Experiments show that our
AdaNS sampling strategy applied on top of representative unsupervised models, e.g., DeepWalk, Graph-
SAGE, can outperform the existing negative sampling strategies in the tasks of node classification and
visualization. This also further demonstrates that sampling those hard negatives can bring performance

improvements for learning the node representations.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

With the explosive generation of graph-structured data in the
real world, graph representation learning methods that learn la-
tent, informative, and low-dimensional representations for nodes
have been rapidly developed in recent years [1-3]. Among them,
supervised learning methods have achieved desirable performance
in several graph-related tasks relying on extensive manual seman-
tic annotations [2,4]. As it is impractical to obtain large-scale an-
notations, there are obstacles to the scaling up of the supervised
methods. In response, we have witnessed an increasing interest in
developing graph representation learning without semantic anno-
tations, also known as unsupervised graph representation learning
[3,5-7].

Recent unsupervised graph representation learning methods us-
ing contrastive objectives have achieved remarkable results [1,3].
Contrastive methods comprise a trainable encoder and a pair
of samplers for positive and negative examples. Specifically, a
contrastive method may employ a scoring function, training the
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encoder to increase the score on &realg input and decrease the
score on &fakeg input. Essentially, contrastive methods are de-
veloped as estimators, which optimize the encoder to maximize
the compatibility between the representations of positive examples
and push the representations of negative examples apart. However,
it is impractical to optimize straightforwardly, unless the compat-
ibility metric is unnormalized. Negative sampling [8], as a simpli-
fied version of Noise Contrastive Estimation (NCE) [9,10], is a fea-
sible strategy for approximate optimization, which simplifies the
estimation of the normalized compatibility as a logistic regression
problem that discriminates between positive and negative samples.
Therefore, the contrastive method with negative sampling is de-
veloped as a discriminator. Based on whether the encoder in the
discriminator employs a single-hidden-layer forward neural net-
work or a message-passing scheme, contrastive methods can be
categorized into two groups: shallow network embedding meth-
ods [7,11,12] and Graph Neural Networks (GNNs) embedding meth-
ods [2,3,5]. Sampling robust and generic positive nodes have been
the main focus for improving the performance of shallow network
embedding methods in recent years [1,7,12]. Meanwhile, the line
of GNNs is dedicated to designing advanced encoders [2,5]. An-
other critical component, namely the negative sampling strategy,
is not sufficiently explored. We argue that the strategy in which
we choose negative samples can significantly affect the quality of
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the representations. For instance, distinguishing a pair of similar
samples gives completely different feedback to the encoder than
distinguishing a pair of absolutely unrelated samples. More fine-
grained discrimination may benefit the expressiveness of the node
representations.

Since the negative sampling is derived from the simplification
of NCE, the uniform sampling strategy is naturally followed. How-
ever, the uniform sampling strategy suffers seriously from slow
convergence, even the vanishing gradient problem, which prevents
the model from achieving the desired representations [13]. To re-
lieve the issues caused by the uniform sampling strategy, model-
ing adaptive negative sampling distributions based on the current
training process emerges as a solution for sampling high-quality
negative examples [14-16]. In essence, there are several significant
limitations. First, common adaptive sampling strategies based on
generative adversarial network (GAN) architectures with extra gen-
erators introduce a myriad of parameters, which significantly limits
the scaling to big graphs. Moreover, even if adaptive negative sam-
pling may relieve the vanishing gradient problem, in practice its
impact on the expressiveness of the yielded node representations
in downstream tasks is unknown.

In this paper, we theoretically prove that adaptively sampling
hard negatives close to the anchor can relieve the vanishing gradi-
ent problem and speed up the model training. Then, we propose
an efficient Adaptive Negative Sampling strategy, named AdaNS,
which exploits the mixing probability of distributions with respect
to dimensional elements to sample negative nodes efficiently. We
then apply the proposed AdaNS on representative unsupervised
graph representation learning models, namely DeepWalk [7] and
GraphSAGE [5], to sample negatives, yielding informative represen-
tations for downstream node classification and visualization tasks.
Extensive experiments are conducted to evaluate the proposed
negative sampling strategy. We experimentally find that sampling
hard negatives are beneficial in improving the performance of the
node representations on downstream tasks. The contributions of
this work can be summarized as follows:

o« We mathematically prove that sampling hard negatives close
to the anchor may relieve the vanishing gradient problem and
speed up the model training.

e We design an efficient adaptive negative sampling strategy
named AdaNS, which not only relieves the vanishing gradient
problem but also alleviates the computational consumption.

e We conduct experiments on DeepWalk and GraphSAGE mod-
els, applying the proposed AdaNS strategy to sample negatives,
to optimize the node representations for node classification
and visualization tasks. The experimental results on seven real-
world standard graph datasets show the superior performance
of the proposed AdaNS.

The remainder of this paper is organized as follows:
Section 2 surveys the related work. Section 3 covers notations
and necessary preliminaries. In Section 4, we present theoretical
insights on noise contrastive estimation and negative sampling.
The proposed model is presented in Section 5. Section 6 reports
the experimental results. Finally, Section 7 concludes this paper
and suggests a future direction.

2. Related Work

The proposed work builds on a rich line of recent research
regarding graph representation learning and negative sampling
strategies. This section reviews related work, including graph rep-
resentation learning and negative sampling, to facilitate the ac-
quaintance of researchers.
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2.1. Graph Representation Learning

A wide variety of graph representation learning models have
been proposed in the past few years, which fall into two cate-
gories: traditional shallow network embedding methods and graph
neural networks (GNNs). Shallow network embedding methods at-
tempt to optimize the node embeddings as parameters by min-
imizing a reconstruction error, and this type of model is de-
voted to studying the sampling strategy of positive node pairs.
Initially proposed by Perozzi et al. [7], DeepWalk employs ran-
dom walk sequences to explore the structural information in a
graph and then learns node embeddings based on the skip-gram
model [8] by maximizing the log-likelihood of the zcontextg nodes
within a fixed window on the sequences for the given node. LINE
[11] extends DeepWalk with both first- and second-order neigh-
bor nodes sampled as positive node pairs and first formally ap-
plies negative sampling for graph representation learning. After
that, Node2vec [1] proposes a biased random walk strategy consid-
ering both depth-first and breadth-first search strategies, based on
which the sampling of positive node pairs can be flexibly adjusted
for various tasks and graphs. SDNE [17] employs a deep autoen-
coder to capture the high non-linearity in graphs. AROPE [18] fur-
ther captures the arbitrary-order node relationships by performing
eigendecomposition on the adjacency matrix. Furthermore, there
are some models for sampling positive node pairs that take ad-
vantage of other node properties on the graph, such as Personal-
ized PageRank [19,20], diffusion patterns [21,22], structural roles
[12,22], and adjacency matrices [23,24]. Rather than learning para-
metric embeddings, GNNs learn mappings from graph structure
and node features into embeddings, which are trained end-to-end
supervised or semi-supervised by neural network parametrization
[2,25]. The original GCN algorithm [2] is proposed to adopt the lo-
calized 1-step spectral convolution to design the message-passing
layer for the semi-supervised classification task. GraphSAGE [5] ex-
tends GCN to the unsupervised task by employing trainable aggre-
gation functions to sample positive and negative examples for the
contrastive objective. Afterwards, DGI [6] attempts to train the con-
trastive model by relying on maximizing local mutual information
between graph-level and node-level embeddings. Similarly, GRACE
[26] maximizes the agreement of node embeddings generated by
two various augmentations. Collectively, these unsupervised meth-
ods can be unified into the graph contrastive learning paradigm,
and a more comprehensive survey of graph representation learn-
ing is provided by [27].

2.2. Negative Sampling

Negative sampling is originally proposed to reduce the com-
plexity of softmax in word2vec [8]. From the perspective of the
sampling scheme, existing negative sampling strategies can be cat-
egorized into two types: static negative sampling and adaptive
sampling for hard negatives. Static negative sampling refers to
applying a predefined noise distribution to all nodes, such as
degree-based sampling [8], uniform sampling [28], and WRMF
[29]. Although the static sampling strategy is easy to implement, it
suffers from the vanishing gradient and thereby cannot achieve the
desired performance. The more informative the negative sample
can be by drawing a finite number of negative samples, the larger
the magnitude of the gradient of the loss function becomes, al-
lowing training to be accelerated. The adaptive sampling strategies
are intended for this purpose. DNS [30] is proposed to dynamically
choose negative samples from the ranked list produced by the cur-
rent prediction scores. WARP [31] follows the assumption that the
rating score of positive items should be higher than those of neg-
ative items, so that for a given positive item, it samples all items
uniformly until a negative item is found. PinSAGE [32] adds ®&hard
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Table 1
Summary of the Main Notations.

g.vV.& Graph, Node set, Edge set

S Sequence of nodes

d Dimension of the learned node representation

F Mapping function from nodes to d-dimensional representations
zy Representation vector or embedding vector of node v
w, h Realizations of the anchor and context nodes

® Model parameters

g () Encoder function

So (-, ) Scoring function

T Transpose of a vector

p(hlw) Probability conditioned on w

Pi(), Pa(¥) Data distribution and noise distribution

J Objective function

o(-) Sigmoid function

sgn(-) Sign of the scalar

negative itemsg according to their Personalized PageRank scores to
provide fine enough &resolutiong for the system to learn. Recently,
the GAN-based negative sampling strategy, which has achieved ex-
cellent performance in information retrieval [14] and knowledge
graphs [33], has also been transferred to graph representation
learning and achieved good performance [15]. Moreover, InterCLR
[34] and Ring [35] argue that the most similar examples might be
better suited as positives rather than negatives. Thus, they choose
fairly similar examples, but not too hard ones, as negatives.

3. Preliminaries

In this section, we introduce the definition and notations for
unsupervised graph representation learning and then present a
typical model - DeepWalk. Main notations are summarized in
Table 1.

3.1. Unsupervised Graph Representation Learning

Given a graph G = (V,€) with node set V = {v1,v2,~-~ *V\V\}
and edge set £ < (Vx V). Unsupervised graph representation
learning aims to learn a mapping function F:v; — z; € RY that
maps each node to a d-dimensional representation, where d < |V|
and z; denotes the embedded vector of node v;. Desired node rep-
resentations should preserve both structural and semantic infor-
mation, thereby facilitating downstream tasks such as node clas-
sification and visualization.

3.2. DeepWalk

To thoroughly understand the important role of negative sam-
pling in unsupervised graph representation learning, we review a
classical method, namely DeepWalk [7]. First, we can split each
node v; into two roles: anchor node w; and context node h; of
other anchor nodes. Given the anchor node w, it obtains a se-
quence of nodes S, from truncated random walks as the set of
context nodes h. Then, DeepWalk employs the Skip-gram [8] model
to learn node representations, which are essential to predicting
the context nodes of each anchor by maximizing the log-likelihood
function as follows:

max Y " log (p(h|w)). (1)

weV heS,,

where w denotes the anchor and h denotes the context nodes, and
p(h|w) is a conditional probability of context node h given the an-
chor w.

To model the conditional probability p(h|w), we introduce an
encoder gy : V; — z; € R? that maps a node to a d-dimensional rep-
resentation, where 6 denotes parameters of the encoder and z; de-
notes the node embedding of node v;. For instance, gy(w) = zy
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denotes that the embedding vector of the anchor node w. Gener-
ally, the encoder is implemented as an embedding lookup in the
network embedding methods [1,7,11], while in the GNN methods
it is a message-passing based neural network model [5,6]. With
those node representations, a scoring function sz : VxV — R is
employed to quantify the compatibility between the context nodes
and the anchor node. For instance, given an anchor node w and its
context nodes h, the score between them is denoted as sy (h, w).
Generally, the scoring function is instanced as the inner product
of the node embeddings, e.g., sy(h,w) =gy(h)Tgy(w) =2]zy. In
terms of modeling node representations, the conditional distribu-
tion corresponding to anchor w, Py (h|w), is defined as:

exp (s (h. w))
Yy XD (s (W, W)

po(hlw) = (2)

4. Theoretical Insights

In this section, we introduce noise contrastive estimation
(NCE) in Section 4.1 and its simplified version customized for
graph representation learning, called negative sampling (NEG), in
Section 4.2. In Section 4.3, we prove that NEG essentially adopts
uniform sampling over a static marginal distribution and that sam-
pling over an adaptive conditional distribution is crucial for repre-
sentation learning. Finally, we show theoretically the principle of
the negative sampling strategy in Section 4.4.

4.1. Noise Contrastive Estimation

Unfortunately, computing pg (h|w) of Eq. (2) requires normaliz-
ing the entire node set V, which means the model training takes
time linearly in the size of nodes |V|. Thus, as a computationally
efficient approximation of the representation learning model, Noise
Contrastive Estimation (NCE) is a stable and efficient alternative so-
lution [9]. The intuition is that converting the probabilistic density
estimation to the probabilistic binary classification problem, dis-
criminating between samples from the original data distribution or
noise distribution. For instance, given some context nodes h sam-
pled from the data distribution P;(h|w) and negative nodes from
a noise distribution P,(h), the optimization objective function for
NCE is

Tnee (0) = Ep,njw)llog (o (Asg (h, w)))]
+ kEp, iy [10g (1 — 0 (Asg (h, w)))] (3)

where Asgy(h, w) = s (h, w) — log(kP,(h)) denotes the difference in
the scores of the context node h under the training model 6 and
the noise distribution P,(h). The scaling coefficient k denotes that
the number of samples from the noise distribution is k times more
frequent than those from the data distribution. Moreover, o (-) de-
notes the sigmoid function o (x) = Hexlm. With DeepWalk as
an instance, the context nodes h are sampled from the truncated
random walk sequence (P;(h|w)), while the negative nodes h’ are
sampled from the node-degree distribution raised to the 3/4th
power (P,(h)). The objective is to fit the conditional probability
model P, (h|w) of Eq. (2) to P;(h|w) [7].

4.2. Negative Sampling

NCE can be considered as to approximately maximize the log
likelihood of Eq. (1), while graph representation learning model
is only concerned with the high-quality node representations [36].
Thus, while ensuring the high quality of node representations, NCE
can be further simplified by omitting the numerical probability of
the noise distribution and holding merely the negative samples,
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termed as Negative sampling, or NEG [7,8,36]. Next, we briefly re-
call the objective of NEG:

k
INee = EBnepyhiw) (1080 (2, 2w)] + Y Epop iy llog o (=2, zw)],
i

(4)

where h ~ P;(h|w) denotes that sampling context nodes h from the
data distribution P;(h|w), h’ ~ P,(h’) denotes that sampling nega-
tive nodes h’ from the noise distribution P;(h’), and thzW denotes
the inner product of two node embeddings. Thus, the task is con-
verted to distinguish between the context nodes h and the negative
samples h’ drawn from the noise distribution B, (h’). In particular,
the coefficient k denotes sampling k negative nodes for each con-
text node.

4.3. From NCE to NEG

In NCE, the negative nodes are sampled i.i.d. from the static
marginal distribution P, (h’). Indeed, NEG, as the simplification, has
the same assumption and further theoretically assumes that P, (h’)
is a uniform distribution. The next theorem shows that NCE can be
mathematically converted to NEG with a uniform sampling strat-

egy.

Theorem 1. Let Egs. (3) and (4) be the objective functions of NCE
and NEG, respectively, where P,(-) denotes the negative noise distri-
bution and k denotes the scaling coefficient, and |V| be the size of the
node set V. NEG is a particular case of NCE, if k = |V| and P,(-) is the
uniform distribution.

Proof of Theorem 1 is given in Appendix A. According to
Theorem 1, we know that NEG is mathematically a special case of
NCE with the uniform sampling strategy over the static marginal
distribution.

However, uniformly sampling negatives from static marginal
distribution P,(h’) may not the optimal manner for learning the
node representations. For instance, prior work has shown the ef-
fectiveness of dynamic hard negatives in the information retrieval
field [30,31,33]. In this work, we similarly explore sampling nega-
tive nodes from the conditional distribution on the current training
state.

Suppose we define a noise distribution P,(h|w) conditioned on
the representation of the anchor node w under the current train-
ing state. Then, we can rewrite the objective function of NEG as
follows:

k
INee = Enepywy (1080 (2, 2w) ]+ Y Epep i) [10g 0 (=2, 24)].
=

(3)

Next, to identify the importance of adaptive negative sampling
on the conditional distribution, we show the optimization objective
for node representation on NEG as follows:

Theorem 2. Let Eq. (5) be the objective function of NEG, where
P;(h|w) denotes the positive data distribution and P,(h|w) denotes
the negative noise distribution, and sy (h, w) be the scoring function.
For each pair of anchor node w and context node h, the optimal rep-
resentation vectors satisfy:

kPa (hw)

By (hlw) (6)

sg(h,w) = —log

Proof of Theorem 2 is given in Appendix B. According to
Theorem 2, we can clearly identify that sampling negative ex-
amples conditioned on the node representations in the current
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training state has the same importance as positive samples. In-
deed, the adaptive conditional distribution may significantly facil-
itate the optimization of the node representations more than the
static marginal distribution.

4.4. The Principle of Negative Sampling Strategy

After determining the importance of adaptively sampling neg-
ative examples, the following query is raised: how to specify an
effective adaptive negative sampling distribution? In response, we
demonstrate that the vanishing gradient problem can be solved
and convergence can be sped up by adaptively sampling hard neg-
atives from a stochastic gradient descent (SGD) optimization per-
spective. In this case, Hard negatives are samples with higher
scores or samples located closer to the anchor in the embedding
space. Intuitively, discriminating similar samples can provide more
information to the model than random samples, hence speeding
up the optimization.

The gradient of objective function of NEG is:

N T

0z,"z, 0z, "zy

.
53 +k;o(zh/ zW)T, (7)

where 6 denotes the parameters of the encoder model, e.g., node
embedding lookup.

Given a set of (w, h,h’) uniformly sampled in a batch, the
stochastic gradient descent step is performed as follows:
'« 22 — (o (z)zw) — 12w, ®)
v 24 — (0 (z),2w))Zw.
where 7 is the learning rate. The representation learning model is
optimized by looping over the above Eq. (8). We can notice that
the gradient magnitude of the embedding for the negative sample
is dependent on the score (e.g., inner product) with the embedding
of the anchor point o (z,zw). It is obvious that if o (z;,zw) is close
to 0, nothing can be learned from the sampled case (w, h’) due to
its vanishing gradient. Therefore, to alleviate the vanishing gradi-
ent problem and speed up the model updating, nodes with higher
scores should be sampled with greater probability. This motivates
that sampling the hard examples h’ to the anchor w. It is worth
noting that the score depends on the current model parameters
6, and thus the negative sampling distribution is adaptive and dy-
namic in the learning process. Formally, given the anchor node w,
we define the adaptive negative sampling distribution as follows:

(9)

ZhTZw
P(hlw) = =————.
n(hlw) S Zn Zn

5. AdaNS: A New Strategy

With the theoretical findings above, we propose an efficient
adaptive negative sampling strategy under the noise contrastive
estimation framework for unsupervised graph representation
learning.

5.1. An Efficient Adaptive Negative Sampling Strategy

We deduce that sampled negative examples should be hard
negatives close to the anchor in Eq. (9), however, each sampling
involves calculating all examples and requires O(|V|-d) time. To
efficiently sample negative examples, in this work, we propose an
approximate negative sampling strategy that formalizes the nega-
tive sampling distribution as a mixing distribution on dimensions.

Firstly, let the inner products in the scoring function above be
a matrix factorization as follows:

d
z)z, = Zzh.fzwyf, (10)
f=1
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where d is the dimension of node embeddings. The negative sam-
pling distribution is defined as follows:

Z?:l Zp fZy f
Yhev Z?:] Zy fZw,f
B Z‘}:1 Zp fZw f
B Zjl’:l Yy Ziv fZwf

_ zh,fzw‘f
o LwevZi fZw g

Pn(h|w) =

zh,f

=00 (11)
Zh’evzh',f

d
=" |zw.s|sen(zw s)
f=1

where sgn(-) denotes the sign of the scalar.

Assume that node embedding vectors for each dimension f fol-
low the normal distribution’, the sampling probability can be de-
fined as the mixing distribution as follows:

d
Po(hlw) = > p(flw)p(h|w, f), (12)
f=1
where p(f|w) denotes the importance of the dimension f for em-
bedding vector of node w.
Following Eqs. (11) and (12), the probability function can be
defined as follows:

p(flw) o |zw g, (13)

Zh,f
DwevZi f
It worth noting that the elements of node vectors can be nega-

tive. To feasibly calculate the probability function, p(h|w, f) can be
further defined as follows:

p(hlw, f) = sgn(zy f) (14)

exp (sgn(zw ()Zp f)
ey €XD (Sg1(Zw )2y f)’

p(hiw, ) = o (sgn(zw )z ;) = (15)

5.2. The Proposed AdaNS Algorithm

We summarize the sampling process from the mixing distribu-
tion, and the detailed pseudocode is shown in Algorithm 1.

Algorithm 1 The training process of AdaNS.

1: Initialize parameter of Encoder 0

2: repeat

3: for each node w do

4 Draw a positive sample h from P, (h|w)

5 Draw a dimension factor f from P(f|w) |zwyf’
6: Draw a negative sample b’ fromP(h’|w, f) (Eq. (15))
7
8:

Update 6 by Stochastic Gradient Descent (Eq. (8))
until Early Stopping or Maximum of Epoch

6. Experiments

To comprehensively assess the proposed negative sampling
strategy, we conduct both node classification and node visualiza-
tion on seven commonly used graph datasets. We apply our pro-
posed strategy and seven negative sampling baselines to represen-
tative shallow network embedding and GNNs embedding models,

1 In practice, the node vectors for each dimension follow the standard normal
distribution.
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Table 2
Statistics of datasets.
Task Datasets #Nodes #Edges #Labels #Features
Shallow Cora-WF 2,708 5,429 7 -
Network Wiki 2,405 15,985 19 -
Embedding PPI 3,890 76,584 50 -
BlogCatalog 10,312 333,983 39 -
GNNs Cora 2,708 5,429 7 1,433
Embedding CiteSeer 3,327 4,732 6 3,703
PubMed 19,717 44,338 3 500

e.g., DeepWalk [7] and GraphSAGE [5], to learn node representa-
tions. The desired node representation would preserve more infor-
mation, thereby achieving a higher classification performance and
a more distinguishable node visualization.

6.1. Datasets

We evaluate the proposed negative sampling strategy with
seven public graph datasets applied to two embedding tasks, re-
spectively. Specifically, we use four graph datasets that have no
features to learn node embeddings with preserved graph structure.
In addition, we use three graph datasets containing both features
and graph structure to deploy GNNs-based node embedding tasks.
For clarity, we summarize the statistics of seven datasets in Table 2
and describe in detail the characteristics of each dataset as follows:

We first describe four datasets without node features for shal-
low network embedding.

e Cora-WF [37]: Cora is a research paper set, where nodes and
edges stand for machine learning papers and citation relation-
ships, respectively. It has 2,708 papers grouped in 7 classes and
5,429 relationships between them.

Wiki [38]: Wiki is a network of web pages with hyperlinks. It
contains 2,405 web pages divided into 19 categories and 15,985
links between them.

PPI [39]: PPI is a subgraph of the Protein-Protein Interac-
tions network for Homo Sapiens. There are 3,890 nodes clas-
sified into 50 categories according to their biological states and
76,584 edges.

BlogCatalog [40]: BlogCatalog is a social blogger network. It has
10,312 bloggers and 333,983 social relationships between them.
Besides, 39 interested topics submitted by bloggers are consid-
ered as labels.

Then, we describe three datasets with node features for GNNs
embedding, namely Cora, Citeseer, and Pubmed. These three ci-
tation networks are standard graph benchmark datasets [37]. In
these datasets, nodes represent papers, and edges refer to citation
relations. And the bag-of-words representations of papers are con-
sidered as node features.

6.2. Shallow Network Embedding

We first evaluate the proposed negative sampling strategy in
the shallow network embedding model. Specifically, the shallow
network embedding model is characterized by embedding lookup
tables containing node embeddings as row or column vectors,
which are treated as parameters and can be updated during the
training process [7,11]. We use the classical model named Deep-
Walk [7] as the backbone model and deploy various negative sam-
pling strategies on it. Theoretically, DeepWalk uses truncated ran-
dom walks to capture context nodes and then optimizes node
embedding by maximizing the co-occurrence probability of nodes
with their contexts, which is measured by normalizing the scores
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between nodes and their contexts. In practice, the scoring is im-
plemented as an inner product of node embeddings, and the opti-
mization objective is to maximize the score between a node and
its contexts and minimize the score between the node and its
sampled negative nodes, that is, to be close to the context nodes
and push apart the negatives in the embedding space. Thus, the
learned node embeddings would preserve the information of the
graph structure. Then, we evaluate negative sampling strategies by
linear classification on the learned embeddings.

6.2.1. Baselines for DeepWalk

We include the following two groups of negative sampling
strategies as baselines.

Static Negative Sampling Strategies

* RNS [28]: Random negative sampling (RNS) is one prevalent
strategy to sample negative nodes with uniform distribution.

o Degree-based Negative Sampling [8]: This strategy is widely
used in the field of graph representation learning. It biases the
uniform distribution to the node-degree distribution raised to
the 3/4rd power.

Hard-based Negative Sampling Strategies

DNS [30]: Dynamic negative sampling (DNS) is a state-of-the-
art sampling strategy for collaborative filtering, which adap-
tively picks the negative item scored highest by the current
recommender among a randomly sampled set of unobserved
items.

WARP [31]: The weighted approximate-rank pairwise (WARP)
adopts uniform sampling with rejection to draw informative
negative samples, whose score should be larger than the pos-
itive one.

KBGAN [33]: Such model is an adversarial sampler, which uni-
formly randomly samples Ns negative examples to calculate the
probability of generating negative samples.

6.2.2. Implementation Details for DeepWalk

For fairness, the number of dimensions is set to be the same
(128) for all negative sampling strategies. When sampling negative
nodes, we set the number of negative nodes as 1. The size of the
unobserved item set in DNS is set to 5 for all datasets. The max-
imal trial of sampling in WARP is set to 50 for efficiency. Ns, the
number of negative items sampled in KBGAN is set to 10. The im-
plementation program is based on Tensorflow. We train all models
for a maximum of 200 epochs and use the early stopping strat-
egy with a patience of 20 epochs. The optimizer adopts Adam to
update model parameters, and the learning rate is 0.001.

In the node classification task for DeepWalk, logistic regression
is adopted as a supervised classifier. In detail, we randomly select
Ty from 10% to 90% fraction of the labeled nodes as the training set
and the remaining nodes as the test set. The performance of the
node classification is assessed by the Micro-F1 score and Macro-
F1 score. The formulas of Micro-F1 and Macro-F1 are:

20, Th

Micro-F1 = ,
> 12TP +FP +FN;

1 2TP,
M -F1 = — =t
acro z ; 2TP, + FP, + FN;’

where z denotes the number of labels, T, F, P, and N denote True,
False, Positive, and Negative, respectively. We repeat the trial 10
times and report the average scores with different training ratios.

6.2.3. Classification Results of DeepWalk
Tables 3-6 report the performance of AdaNS in comparison to
baseline strategies. Notably, the best results are shown in bold.
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From the results, we can draw the following observations and con-
clusions.

o For static samplers, the Degree-based negative sampling model
achieves higher Micro-F1 and Macro-F1 results compared with
RNS in most cases. It demonstrates that the Degree-based neg-
ative sampling strategy can alleviate the vanishing gradient
problem caused by RNS, thereby improving the performance of
the node representations.

e The adaptive samplers such as DNS, KBGAN, and WARP out-
perform the static samplers in most cases, suggesting that dy-
namically sampling the hard negatives is better than the prede-
fined static distributions. DNS achieves performance over other
baselines second only to AdaNS on Cora, Wiki, and BlogCatalog,
which proves that drawing negative samples with the highest
scores in the subset is beneficial to improving model perfor-
mance. The performance achieved by both KBGAN is unstable,
only surpasses RNS consistently, and is inferior to the Degree-
based model on the Wiki and PPI datasets. This may be because
KBGAN is essentially equivalent to importance sampling in sub-
sets, and thus its performance is highly dependent on the sam-
pling of subsets by uniform sampling. WARP outperforms RNS
and Degree-based strategies in almost all cases and KBGAN in
75% of cases, but its performance is lower than that of DNS be-
cause its rejection sampling makes it difficult to sample match-
ing nodes before the patient round after the model has been
trained to a certain level, which hinders its further performance
improvement.

e AdaNS achieves more satisfactory performance over baselines,
especially on the BlogCatalog, where AdaNS consistently out-
performs all baselines regardless of training set ratios as well
as metrics. It indicates that our proposed mixing distribution
sampling is more effective than existing adaptive samplers and
static samplers.

6.3. GNNs Embedding

Different from the shallow network embedding models, GNNs
embedding models can utilize graph features more effective. The
basic idea of GNNs is iteratively aggregating node feature in-
formation from the neighborhood to yield continuous smoothing
node embeddings over the graph structure, which is the message-
passing framework [2,5,6]. In this experiment, we adopt the Graph-
SAGE [2] as the backbone model due to its two advantages: 1) It
captures contextual nodes by sampling the neighborhood, which is
more efficient than the classical message-passing scheme; 2) it has
both unsupervised learning and supervised learning training im-
plementations, which will yield more intuitive node visualization
results.

It is noting that any current SOTA GNN methods can be used
as the encoder in the unsupervised contrastive paradigm, just like
GraphSAGE, thus AdaNS can improve the overall model equipped
with any elaborate message-passing scheme.

6.3.1. Baselines for GraphSAGE
For baselines, beyond those mentioned above, we further add
two following semi-hard strategies:

o InterCLR [34]: InterCLR presents a semi-hard negative sampling,
which first samples a pool with the top 10% most similar exam-
ple and then randomly draws negatives from the pool.

¢ Ring [35]: Ring argues that the most similar examples might be
better suited as positive examples rather than negative ones.
Therefore, it chooses fairly similar examples, but not too hard
ones, as negatives.
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Table 3
Node classification results of DeepWalk on Cora.
Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90%
Degree 0.6103 0.6880 0.7099 0.7305 0.7312 0.7399 0.7540 0.7454 0.7565
RNS 0.6354 0.6908 0.7157 0.7262 0.7201 0.7269 0.7466 0.7565 0.7565
Micro-F1 DNS 0.6920 0.7310 0.7511 0.7588 0.7696 0.7694 0.7835 0.7768 0.8007
KBGAN 0.6505 0.7084 0.7215 0.7317 0.7341 0.7380 0.7417 0.7399 0.7528
WARP 0.6707 0.7116  0.7409 0.7480 0.7631 0.7648 0.7586 0.7556 0.7648
AdaNS 0.6924 0.7476 0.7574 0.7717 0.7792 0.7749  0.7872 0.7970 0.8229
Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90%
Degree 0.5756  0.6736  0.6904 0.7091 0.7119 0.7306 0.7372 0.7432 0.7329
RNS 0.6185 0.6828 0.7056 0.7135 0.7104 0.7093 0.7326 0.7377 0.7091
Macro-F1 ~ DNS 0.6755 0.7197 0.7383 0.7484 0.7576 0.7584 0.7673 0.7612  0.7717
KBGAN 0.6285 0.6971 0.7077 0.7217  0.7234 0.7241 0.7315 0.7300 0.7109
WARP 0.6532 0.7028 0.7286 0.7417 0.7508 0.7555 0.7455 0.7435 0.7556
AdaNS 0. 6754  0.7368 0.7471  0.7607 0.7663 0.7644 0.7801 0.7795 0.7898

Table 4
Node classification results of DeepWalk on Wiki.
Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90%
Degree 0.5630 0.5962 0.6105 0.6334 0.6509 0.6632 0.6648 0.6694 0.6349
RNS 0.5303 0.5998 0.6188 0.6202 0.6467 0.6414 0.6371 0. 6528  0.6390
Micro-F1 DNS 0.5557 0.6107 0.6366 0.6542 0.6717 0.6663 0.6787 0.6861 0.6390
KBGAN 0.5644 0. 6081 0.6229 0.6286 0.6517 0.6486 0.6537 0.6549 0.6100
WARP 0.5636 0.6072 0.6257 0.6324 0.6585 0.6662 0.6804 0.6825 0.6115
AdaNSs 0.5686 0.6201 0.6449 0.6694 0.6733 0.6684 0.6814 0.6882 0.6681
Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90%
Degree 0.3975 0.4740 0.5084 0.5105 0.5322 0.5261 0.5634  0.5730 0.5275
RNS 0.3847 0.4559 0.5043 0.5179 0.5349 0.5264 0.5381 0.5326  0.5341
Macro-F1 ~ DNS 0.4206 0.5010 0.5362 0.5350 0.5554 0.5634 0.5773 0.5940 0.5414
KBGAN 0.4293 0.4774 0.5113  0.5197 0.5442 0.5263 0.5397 0.5308 0.5003
WARP 0.4262 0.4839 0.5194 0.5290 0.5304 0.5419 0.5508 0.5676 0.5275
AdaNS 0.4030 0.4663  0.5338  0.5659 0.5586 0. 5497  0.5836 0.5961 0. 5564
Table 5
Node classification results of DeepWalk on PPI.
Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90%
Degree 0.1668  0.1802  0.1976  0.1994 0.2141 0.2101 0.2149 0.2229 0. 2496
RNS 0.1595  0.1753  0.1882  0.1934 0.2010 0.2041 0.2105 0.2148 0.2237
Micro-F1 DNS 0.1691 0.1994 0.1966  0.2012 0.2108 0.2214 0.2221 0.2226 0.2237
KBGAN 0.1702  0.1791 0.1886  0.1904 0.2043 0.2082 0.2193 0.2185 0.2323
WARP 0.1733  0.1951  0.1959  0.1977 0.1996 0.2058  0.2248 0.2225 0.2338
AdaNS 0.1803 0.1988  0.2085  0.2197  0.2255 0.2315 0.2379 0.2331 0. 2439
Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90%
Degree 0.1228  0.1396  0.1567  0.1633 0.1756 0.1750 0.1736 0.1755 0.1982
RNS 0.1207  0.1363  0.1464  0.1544 0.1637 0.1703 0.1739 0.1713 0.1905
Macro-F1 ~ DNS 0.1197  0.1393  0.1401 0.1455 0.1499 0.1554 0.1573 0.1579 0.1594
KBGAN 0.1269  0.1405  0.1493  0.1563 0.1707 0.1773 0.1762 0.1735 0.1808
WARP 0.1318  0.1345 0.1455  0.1476 0.1511 0.1564 0.1729 0.1747 0.1775
AdaNS 0.1340 0.1471 0.1607  0.1745 0.1754 0.1843 0.1849 0.1786 0.1901
Table 6
Node classification results of DeepWalk on BlogCatalog.
Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90%

Degree 0. 2911 0.3246  0.3427 0.3557 0.3635 0. 3661 0.3754 0.3825 0.4018
RNS 0.3026 0.3289 0.3483 0.3556 0.3589 0.3628 0.3680 0.3781 0. 3762
Micro-F1 DNS 0.3494  0.3743 0.3845 0.3888 0.3876 0.3971 0. 3981 0. 4071 0. 4118
KBGAN 0. 2911 0. 3261 0.3470 0.3599 0.3612 0.3720 0.3790 0. 3911 0. 4031
WARP 0.2906  0.3220 0.3471 0.3532 0.3578 0.3802 0.3896 0.4015 0.4053
AdaNS 0.3576 0.3819 0.3880 0.3957 0.3986 0.4075 0.4167 0.4279 0. 4280
Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90%
Degree 0.1677 0.1968 0.2115  0.2381 0.2312  0.2306  0.2401 0.2416  0.2755
RNS 0.1702 0.1975 0.2200 0.2229 0.2237 0.2300 0.2492 0.2538 0.2633
Macro-F1 DNS 0.1869 0. 2193 0.2322  0.2409  0.2393 0.2517 0.2518  0.2701 0. 2847
KBGAN 0.1693 0.1999 0.2138  0.2221 0.2248  0.2323 0.2394 0.2595 0.2793
WARP 0.1915 0.1988 0.2242  0.2408  0.2382 0.2383 0.2470  0.2638  0.2848
AdaNS 0.2017 0.2367 0.2449 0.2473 0.2477 0.2649 0.2766 0.2913  0.2930
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Table 7

The classification accuracy results of GraphSAGE with various negative sampling strategies.
Strategies  Cora Citeseer Pubmed

full random  public  full random  public  full random  public

Degree 0.815 0.75 0.768 0.694 0613 0.615 0.821  0.755 0.778
RNS 0.799  0.747 0.749 0.69 0.592 0.639 0.817 0.724 0.758
DNS 0.779  0.754 0.739 0.674  0.589 0.588 0.815  0.745 0.751
KBGAN 0.797  0.759 0.744 0.664  0.584 0.589 0.822  0.755 0.767
InterCLR 0.819  0.769 0.762 0.689  0.61 0.621 0.822  0.756 0.788
Ring 0.817  0.756 0.775 0.69 0.628 0.65 0.824 0.77 0.784
AdaNS 0.833 0.78 0.779 0.704 0.633 0.653 0.826 0.76 0.792

6.3.2. Implementation Details for GraphSAGE

We implement the negative sampling strategies on top of the
unsupervised GraphSAGE [5]. For GraphSAGE, the mean-aggregator
is used in our experiments. We set the dimension of the hid-
den layer as 64. In training, we use SGD with a learning rate of
0.01 and no weight decay for 100 epochs and batch size 256. For
Ring, we set the upper percent as 90%. For three citation network
datasets, we use the default three splits, namely full, random, and
public [41]. We evaluate the performance of models by node clas-
sification accuracy.

6.3.3. Classification Results of GraphSAGE

We report the classification results of GraphSAGE with various
negative sampling strategies in Table 7. The best results in each
setting are shown in bold. From the results, we can obtain the fol-
lowing observations.

o For two static negative sampling strategies, namely Degree and
RNS, the results are lower than most semi-hard-based strategies
but higher than hard-based ones. Specifically, the performance
of Degree outperforms RNS in eight of nine settings, which
implies that the node-degree-based negative sampling strategy
benefits node representation learning in the GNNs model.

e We can observe that two semi-hard-based strategies, namely
InterCLR and Ring, are superior to two hard-based strategies,
namely DNS and KBGAN. This phenomenon is attributed to the
fact that the message-passing scheme in GNNs constrains the
smoothness of the neighboring nodes, making their representa-
tions more similar. Since GNNs follow the assumption of homo-
geneity [42], i.e., neighboring nodes are more likely to belong to
the same class, the most similar nodes, or the hardest nodes,
are more likely to be positive examples, which deviates from
the hard-based negative sampling strategy. To verify the above,
we study the impact of the message-passing scheme in GNNs
on the hard-based negative sampling strategies. Specifically, we
adopt node embeddings learned on DeepWalk and GraphSAGE
with 50 epochs and then choose the 100 most similar nodes for
each anchor, where the nodes with the same class as the an-
chor are regarded as positive samples. Finally, we calculate the
frequency of positive samples for each node. As shown in Fig. 1,
we plot the histograms of positive sample frequencies of Deep-
Walk or GraphSAGE on Cora. We can observe that the node em-
beddings learned by GraphSAGE based on the message-passing
scheme significantly increase the frequency of positive samples
among similar nodes compared to DeepWalk, which accord-
ingly means that the negative sampled on hard-based strategies
are more likely false negative samples. Therefore, appropriately
relaxing the hardness, such as by using the strategy based on
semi-hard, achieves superior classification performance.

e Our proposed strategy adaptively samples negatives from the
mixing distribution, which enables our strategy to sample hard
negative examples. Moreover, our strategy focuses on only
some of the dimensional elements, which can be considered
a hardness relaxation, so our proposed strategy can also be

viewed as a semi-hard sampling strategy. Such a property fa-
cilitates the node classification in GNNs, and thus our proposed
AdaNS achieves superior classification performance in eight of
nine settings.

6.4. Graph Visualization

To evaluate the qualities of node representations, visualization
is the most common task. In the visualization task, we employ the
t-distributed stochastic neighbor embedding (t-SNE) [43], a nonlin-
ear dimension reduction and visualization approach, to transform
the node representations into a 2-dimensional space.

First, we aim to evaluate the impact of different negative sam-
pling strategies on the discriminability of node representations.
Specifically, we deploy different negative sampling strategies on
top of the GraphSAGE model to learn node representations on the
Cora dataset. Furthermore, to improve the quality of visualization,
we adopt a semi-supervised GraphSAGE in this experiment, which
includes both supervised loss and unsupervised loss to train the
model jointly. It is worth noting that since InterCLR can theoreti-
cally be considered as a special case of Ring [35], and the visual-
ization of node representations learned by InterCLR is very similar
to that learned by Ring, we exhibit them jointly in a view. The
visualization results are shown in Fig. 2, where different colors de-
note nodes in different categories, and the symbol "x” denotes the
cluster centroid of each category. The centroid can take into ac-
count the nodes that deviate from the cluster, thus measuring the
discriminability of the nodes globally. Geometrically, a larger re-
gion enclosed by cluster centroids indicates better discriminabil-
ity. We plot the geometrically enclosed region of AdaNS in red and
those of the baselines in black. We can observe that the area of the
geometrically enclosed region generated by our proposed AdaNS
exceeds all baselines. Numerically, we measure the discriminabil-
ity of node representations via the mean distance between the
pairwise cluster centroids, where a larger distance indicates that
the node representations preserve better discriminability, and vice
versa indicates lower discriminability, namely, that nodes of differ-
ent classes tend to be mixed. We annotate the numerical results of
the centroid distance, and the results show that the node represen-
tation generated by AdaNS has the largest value, which confirms
the superiority of AdaNS.

Next, we study the sampling effects in practice using various
sampling strategies. Specifically, we randomly sample a batch of
100 nodes from the Cora dataset. Given the anchor node, we use
various sampling strategies to draw 10 negative samples respec-
tively. A visualization of the sampling results in the embedding
space is shown in Fig. 3. It is worth noting that in the embedding
space, close nodes indicate similarity. We can find that both Degree
and RNS statically sample negative nodes approximately at random
within the whole batch. In contrast, DNS clearly tends to select the
closest nodes, and KBGAN can be seen as a relaxed variant of DNS,
which has the potential to select the more distant nodes as neg-
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Fig. 1. Positive samples histograms of models with DeepWalk or GraphSAGE as encoders on Cora.
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Fig. 2. Visualization of node representations on Cora dataset. Different colors denote different categories of nodes.

ative samples. While Ring, InterCLR, and AdaNS tend to select the
nodes that are relatively closest, but at a certain distance.

6.5. Study and Analysis
6.5.1. Classification Quality

Figure 4 presents the classification quality as a function of
training epochs. We conduct experiments on top of DeepWalk and

GraphSAGE, on Cora dataset with {10%, 50%, 90%} training set and
three splits, respectively. As shown in Fig. 4(a), (c) and (e), the
performance on DeepWalk with adaptive strategies such as DNS,
WARP, KBGAN, and AdaNS, are drastically increased in the early
training process compared to the static strategies. This demon-
strates that sampling hard negatives improve both the effective-
ness and efficiency of the model. Besides, we observe that DNS
and WARP, after peaking in performance, begin to degrade as they
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Fig. 3. Visualization of various negative sampling strategies in the embedding space. Given an anchor node (red dot), we draw negative samples (blue dots) with different

strategies.

are over-trained. In contrast, our proposed AdaNS, after efficiently
achieving optimal performance, remains in a stable state as train-
ing proceeds. As for GraphSAGE in Fig. 4(b), (d) and (f), due to
the message-passing scheme, neighboring nodes that tend to be-
long to the same category naturally have high similarity, so most
of the strategies achieve good accuracy at the early stage of train-
ing, where the adaptive strategies still show the higher ceiling. And
as the training proceeds, the strategies based on static distribution,
i.e., Degree and RNS, exhibit lackluster performance. In particular,
DNS still declines sharply after reaching peak performance, even
earlier than on DeepWalk, due to the smoothness of the message-
passing scheme in GNNs. In contrast, semi-hard-based strategies
achieve more stable performance.

6.5.2. Training Loss

To investigate the effect of adaptive negative sampling on alle-
viating vanishing gradient, we experimentally record the training
loss as a function of training epochs for various negative sampling
strategies on the Cora dataset. As shown in Fig. 5, we can observe
that the adaptive sampling strategy can better optimize the train-
ing loss compared to the two static sampling strategies, Degree and
RNS. Taking AdaNS as a benchmark, we can see the obvious fluc-

10

tuation of DNS, which is due to its hard-based sampling strategy
that mistakenly selects positive samples as negative samples dur-
ing training. In contrast, KBGAN, InterCLR, and Ring exhibit more
stable training losses. In particular, in Fig. 5(a), we can observe that
the training loss of WARP decreases slowly since its negative nodes
sampled must be larger than the positive ones, which inevitably
sample a lot of false negatives. In contrast, DNS consistently sam-
ples the hardest negative nodes, resulting in a rapid and continu-
ous decrease in training loss. In conclusion, adaptive negative sam-
pling strategies are able to obtain lower training losses faster and
more consistently, which demonstrates the capability to mitigate
the vanishing gradient problem.

6.5.3. Efficiency Analysis

Adaptive sampling is time-consuming in comparison to static
sampling while improving performance, hence the efficiency of
sampling negatives is critical. The average running time per epoch
for adaptive strategies is summarized in Fig. 6. As the rejection
mechanism of WARP increases in difficulty as training progresses,
we adopt the average running time per epoch for a fair compari-
son. From the figure, we can find that the running time of AdaNS
is the least, while WARP takes the most running time, due to its
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Fig. 5. The training Loss as a function of training epochs.

rejection mechanism. Both DNS and KBGAN calculate the proba-
bility of the negative samples from a subset of candidates, while
KBGAN is the relatively more efficient strategy. In short, the pro-
posed adaptive sampling strategy AdaNS is satisfactory in terms
of performance and efficiency compared to other state-of-the-art
strategies.

7. Conclusion and Discussions

ing
ran

1

Summary. In this paper, an adaptive negative sampling strat-
egy, named AdaNS, for unsupervised graph representation learn-
is proposed. Different from the existing strategies that sample
domly negative nodes, AdaNS adopts an efficient and effective
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Fig. 6. The running time per epoch for different negative sampling strategies. Note
that the unit of time for BlogCatalog is minutes, while the unit of time for the other
datasets is seconds.

way to implement negative sampling by drawing hard negatives
from the mixing distribution with respect to the dimensional ele-
ments in the node vectors. We conduct experiments on node clas-
sification and visualization tasks to evaluate the proposed strategy.
The experimental results on seven benchmark datasets show that
AdaNS is very competitive with state-of-the-art strategies.

Limitations of this work. There are several limitations from
theoretical analysis and experimental justification. 1) To make the
theoretical analysis more feasible, we make a few assumptions.
We derive the parametric embedding as an instance in our anal-
ysis, since the main focus is the effect of negative samples on the
gradient update. While the experiment results empirically demon-
strate that our analysis seems to hold with GNN models, more for-
mal investigation for deep neural network models is valuable. 2)
Our proposed method is only verified on benchmark graphs, while
there are more challenging in real-world scenarios, e.g., dynamic
graphs and hypergraphs. Hence, it is crucial to devote more efforts
to studying more complicated graphs. We believe our findings es-
tablished a solid foundation for further research.
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