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a b s t r a c t 

Recently, unsupervised graph representation learning has attracted considerable attention through ef- 

fectively encoding graph-structured data without semantic annotations. To accelerate its training, noise 

contrastive estimation (NCE) samples uniformly negative examples to fit an unnormalized graph model. 

However, this uniform sampling strategy may easily lead to slow convergence, even the vanishing gra- 

dient problem. In this paper, we theoretically show that sampling those hard negatives close to the cur- 

rent anchor can relieve the above difficulties. With this finding, we then propose an Ada ptive N egative 

S ampling strategy, namely AdaNS, which efficiently samples the hard negatives from the mixing distribu- 

tion regarding the dimensional elements of the current node representation. Experiments show that our 

AdaNS sampling strategy applied on top of representative unsupervised models, e.g., DeepWalk, Graph- 

SAGE, can outperform the existing negative sampling strategies in the tasks of node classification and 

visualization. This also further demonstrates that sampling those hard negatives can bring performance 

improvements for learning the node representations. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the explosive generation of graph-structured data in the 

eal world, graph representation learning methods that learn la- 

ent, informative, and low-dimensional representations for nodes 

ave been rapidly developed in recent years [1–3] . Among them, 

upervised learning methods have achieved desirable performance 

n several graph-related tasks relying on extensive manual seman- 

ic annotations [2,4] . As it is impractical to obtain large-scale an- 

otations, there are obstacles to the scaling up of the supervised 

ethods. In response, we have witnessed an increasing interest in 

eveloping graph representation learning without semantic anno- 

ations, also known as unsupervised graph representation learning 

3,5–7] . 

Recent unsupervised graph representation learning methods us- 

ng contrastive objectives have achieved remarkable results [1,3] . 

ontrastive methods comprise a trainable encoder and a pair 

f samplers for positive and negative examples. Specifically, a 

ontrastive method may employ a scoring function, training the 
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ncoder to increase the score on ǣreal ǥ input and decrease the 

core on ǣfake ǥ input. Essentially, contrastive methods are de- 

eloped as estimators, which optimize the encoder to maximize 

he compatibility between the representations of positive examples 

nd push the representations of negative examples apart. However, 

t is impractical to optimize straightforwardly, unless the compat- 

bility metric is unnormalized. Negative sampling [8] , as a simpli- 

ed version of Noise Contrastive Estimation (NCE) [9,10] , is a fea- 

ible strategy for approximate optimization, which simplifies the 

stimation of the normalized compatibility as a logistic regression 

roblem that discriminates between positive and negative samples. 

herefore, the contrastive method with negative sampling is de- 

eloped as a discriminator. Based on whether the encoder in the 

iscriminator employs a single-hidden-layer forward neural net- 

ork or a message-passing scheme, contrastive methods can be 

ategorized into two groups: shallow network embedding meth- 

ds [7,11,12] and Graph Neural Networks (GNNs) embedding meth- 

ds [2,3,5] . Sampling robust and generic positive nodes have been 

he main focus for improving the performance of shallow network 

mbedding methods in recent years [1,7,12] . Meanwhile, the line 

f GNNs is dedicated to designing advanced encoders [2,5] . An- 

ther critical component, namely the negative sampling strategy, 

s not sufficiently explored. We argue that the strategy in which 

e choose negative samples can significantly affect the quality of 
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he representations. For instance, distinguishing a pair of similar 

amples gives completely different feedback to the encoder than 

istinguishing a pair of absolutely unrelated samples. More fine- 

rained discrimination may benefit the expressiveness of the node 

epresentations. 

Since the negative sampling is derived from the simplification 

f NCE, the uniform sampling strategy is naturally followed. How- 

ver, the uniform sampling strategy suffers seriously from slow 

onvergence, even the vanishing gradient problem, which prevents 

he model from achieving the desired representations [13] . To re- 

ieve the issues caused by the uniform sampling strategy, model- 

ng adaptive negative sampling distributions based on the current 

raining process emerges as a solution for sampling high-quality 

egative examples [14–16] . In essence, there are several significant 

imitations. First, common adaptive sampling strategies based on 

enerative adversarial network (GAN) architectures with extra gen- 

rators introduce a myriad of parameters, which significantly limits 

he scaling to big graphs. Moreover, even if adaptive negative sam- 

ling may relieve the vanishing gradient problem, in practice its 

mpact on the expressiveness of the yielded node representations 

n downstream tasks is unknown. 

In this paper, we theoretically prove that adaptively sampling 

ard negatives close to the anchor can relieve the vanishing gradi- 

nt problem and speed up the model training. Then, we propose 

n efficient Ada ptive N egative S ampling strategy, named AdaNS, 

hich exploits the mixing probability of distributions with respect 

o dimensional elements to sample negative nodes efficiently. We 

hen apply the proposed AdaNS on representative unsupervised 

raph representation learning models, namely DeepWalk [7] and 

raphSAGE [5] , to sample negatives, yielding informative represen- 

ations for downstream node classification and visualization tasks. 

xtensive experiments are conducted to evaluate the proposed 

egative sampling strategy. We experimentally find that sampling 

ard negatives are beneficial in improving the performance of the 

ode representations on downstream tasks. The contributions of 

his work can be summarized as follows: 

• We mathematically prove that sampling hard negatives close 

to the anchor may relieve the vanishing gradient problem and 

speed up the model training. 
• We design an efficient adaptive negative sampling strategy 

named AdaNS, which not only relieves the vanishing gradient 

problem but also alleviates the computational consumption. 
• We conduct experiments on DeepWalk and GraphSAGE mod- 

els, applying the proposed AdaNS strategy to sample negatives, 

to optimize the node representations for node classification 

and visualization tasks. The experimental results on seven real- 

world standard graph datasets show the superior performance 

of the proposed AdaNS. 

The remainder of this paper is organized as follows: 

ection 2 surveys the related work. Section 3 covers notations 

nd necessary preliminaries. In Section 4 , we present theoretical 

nsights on noise contrastive estimation and negative sampling. 

he proposed model is presented in Section 5 . Section 6 reports 

he experimental results. Finally, Section 7 concludes this paper 

nd suggests a future direction. 

. Related Work 

The proposed work builds on a rich line of recent research 

egarding graph representation learning and negative sampling 

trategies. This section reviews related work, including graph rep- 

esentation learning and negative sampling, to facilitate the ac- 

uaintance of researchers. 
2 
.1. Graph Representation Learning 

A wide variety of graph representation learning models have 

een proposed in the past few years, which fall into two cate- 

ories: traditional shallow network embedding methods and graph 

eural networks (GNNs). Shallow network embedding methods at- 

empt to optimize the node embeddings as parameters by min- 

mizing a reconstruction error, and this type of model is de- 

oted to studying the sampling strategy of positive node pairs. 

nitially proposed by Perozzi et al. [7] , DeepWalk employs ran- 

om walk sequences to explore the structural information in a 

raph and then learns node embeddings based on the skip-gram 

odel [8] by maximizing the log-likelihood of the ǣcontext ǥ nodes 

ithin a fixed window on the sequences for the given node. LINE 

11] extends DeepWalk with both first- and second-order neigh- 

or nodes sampled as positive node pairs and first formally ap- 

lies negative sampling for graph representation learning. After 

hat, Node2vec [1] proposes a biased random walk strategy consid- 

ring both depth-first and breadth-first search strategies, based on 

hich the sampling of positive node pairs can be flexibly adjusted 

or various tasks and graphs. SDNE [17] employs a deep autoen- 

oder to capture the high non-linearity in graphs. AROPE [18] fur- 

her captures the arbitrary-order node relationships by performing 

igendecomposition on the adjacency matrix. Furthermore, there 

re some models for sampling positive node pairs that take ad- 

antage of other node properties on the graph, such as Personal- 

zed PageRank [19,20] , diffusion patterns [21,22] , structural roles 

12,22] , and adjacency matrices [23,24] . Rather than learning para- 

etric embeddings, GNNs learn mappings from graph structure 

nd node features into embeddings, which are trained end-to-end 

upervised or semi-supervised by neural network parametrization 

2,25] . The original GCN algorithm [2] is proposed to adopt the lo- 

alized 1-step spectral convolution to design the message-passing 

ayer for the semi-supervised classification task. GraphSAGE [5] ex- 

ends GCN to the unsupervised task by employing trainable aggre- 

ation functions to sample positive and negative examples for the 

ontrastive objective. Afterwards, DGI [6] attempts to train the con- 

rastive model by relying on maximizing local mutual information 

etween graph-level and node-level embeddings. Similarly, GRACE 

26] maximizes the agreement of node embeddings generated by 

wo various augmentations. Collectively, these unsupervised meth- 

ds can be unified into the graph contrastive learning paradigm, 

nd a more comprehensive survey of graph representation learn- 

ng is provided by [27] . 

.2. Negative Sampling 

Negative sampling is originally proposed to reduce the com- 

lexity of softmax in word2vec [8] . From the perspective of the 

ampling scheme, existing negative sampling strategies can be cat- 

gorized into two types: static negative sampling and adaptive 

ampling for hard negatives. Static negative sampling refers to 

pplying a predefined noise distribution to all nodes, such as 

egree-based sampling [8] , uniform sampling [28] , and WRMF 

29] . Although the static sampling strategy is easy to implement, it 

uffers from the vanishing gradient and thereby cannot achieve the 

esired performance. The more informative the negative sample 

an be by drawing a finite number of negative samples, the larger 

he magnitude of the gradient of the loss function becomes, al- 

owing training to be accelerated. The adaptive sampling strategies 

re intended for this purpose. DNS [30] is proposed to dynamically 

hoose negative samples from the ranked list produced by the cur- 

ent prediction scores. WARP [31] follows the assumption that the 

ating score of positive items should be higher than those of neg- 

tive items, so that for a given positive item, it samples all items 

niformly until a negative item is found. PinSAGE [32] adds ǣhard 
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Table 1 

Summary of the Main Notations. 

G, V, E Graph, Node set, Edge set 

S Sequence of nodes 

d Dimension of the learned node representation 

F Mapping function from nodes to d-dimensional representations 

z v Representation vector or embedding vector of node v 
w, h Realizations of the anchor and context nodes 

� Model parameters 

g θ (·) Encoder function 

s θ (·, ·) Scoring function 

·� Transpose of a vector 

p(h | w ) Probability conditioned on w 

P d (·) , P n (·) Data distribution and noise distribution 

J Objective function 

σ (·) Sigmoid function 

sgn (·) Sign of the scalar 
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egative items ǥ according to their Personalized PageRank scores to 

rovide fine enough ǣresolution ǥ for the system to learn. Recently, 

he GAN-based negative sampling strategy, which has achieved ex- 

ellent performance in information retrieval [14] and knowledge 

raphs [33] , has also been transferred to graph representation 

earning and achieved good performance [15] . Moreover, InterCLR 

34] and Ring [35] argue that the most similar examples might be 

etter suited as positives rather than negatives. Thus, they choose 

airly similar examples, but not too hard ones, as negatives. 

. Preliminaries 

In this section, we introduce the definition and notations for 

nsupervised graph representation learning and then present a 

ypical model - DeepWalk. Main notations are summarized in 

able 1 . 

.1. Unsupervised Graph Representation Learning 

Given a graph G = (V, E ) with node set V = 

{
v 1 , v 2 , · · · , v |V| 

}

nd edge set E ⊆ ( V × V ) . Unsupervised graph representation 

earning aims to learn a mapping function F : v i → z i ∈ R 

d that

aps each node to a d-dimensional representation, where d � | V | 
nd z i denotes the embedded vector of node v i . Desired node rep- 

esentations should preserve both structural and semantic infor- 

ation, thereby facilitating downstream tasks such as node clas- 

ification and visualization. 

.2. DeepWalk 

To thoroughly understand the important role of negative sam- 

ling in unsupervised graph representation learning, we review a 

lassical method, namely DeepWalk [7] . First, we can split each 

ode v i into two roles: anchor node w i and context node h i of 

ther anchor nodes. Given the anchor node w , it obtains a se- 

uence of nodes S w 

from truncated random walks as the set of 

ontext nodes h . Then, DeepWalk employs the Skip-gram [8] model 

o learn node representations, which are essential to predicting 

he context nodes of each anchor by maximizing the log-likelihood 

unction as follows: 

ax 
∑ 

w ∈V 

∑ 

h ∈S w 
log ( p ( h | w ) ) , (1) 

here w denotes the anchor and h denotes the context nodes, and 

p(h | w ) is a conditional probability of context node h given the an-

hor w . 

To model the conditional probability p(h | w ) , we introduce an 

ncoder g θ : v i → z i ∈ R 

d that maps a node to a d-dimensional rep-

esentation, where θ denotes parameters of the encoder and z i de- 

otes the node embedding of node v i . For instance, g θ (w ) = z w 
3 
enotes that the embedding vector of the anchor node w . Gener- 

lly, the encoder is implemented as an embedding lookup in the 

etwork embedding methods [1,7,11] , while in the GNN methods 

t is a message-passing based neural network model [5,6] . With 

hose node representations, a scoring function s θ : V × V → R is 

mployed to quantify the compatibility between the context nodes 

nd the anchor node. For instance, given an anchor node w and its 

ontext nodes h , the score between them is denoted as s θ (h, w ) .

enerally, the scoring function is instanced as the inner product 

f the node embeddings, e.g., s θ (h, w ) = g θ (h ) � g θ (w ) = z � 
h 

z w 

. In

erms of modeling node representations, the conditional distribu- 

ion corresponding to anchor w , P θ (h | w ) , is defined as: 

p θ (h | w ) = 

exp 

(
s θ (h, w ) 

)
∑ 

h ′ ∈V exp 

(
s θ (h 

′ , w ) 
) . (2) 

. Theoretical Insights 

In this section, we introduce noise contrastive estimation 

NCE) in Section 4.1 and its simplified version customized for 

raph representation learning, called negative sampling (NEG), in 

ection 4.2 . In Section 4.3 , we prove that NEG essentially adopts 

niform sampling over a static marginal distribution and that sam- 

ling over an adaptive conditional distribution is crucial for repre- 

entation learning. Finally, we show theoretically the principle of 

he negative sampling strategy in Section 4.4 . 

.1. Noise Contrastive Estimation 

Unfortunately, computing p θ (h | w ) of Eq. (2) requires normaliz- 

ng the entire node set V , which means the model training takes 

ime linearly in the size of nodes |V| . Thus, as a computationally 

fficient approximation of the representation learning model, Noise 

ontrastive Estimation (NCE) is a stable and efficient alternative so- 

ution [9] . The intuition is that converting the probabilistic density 

stimation to the probabilistic binary classification problem, dis- 

riminating between samples from the original data distribution or 

oise distribution. For instance, given some context nodes h sam- 

led from the data distribution P d (h | w ) and negative nodes from 

 noise distribution P n (h ) , the optimization objective function for 

CE is 

 

w 

NCE (θ ) = E P d (h | w ) [ log (σ (�s θ (h, w ))) ] 

+ k E P n (h ) [ log (1 − σ (�s θ (h, w ))) ] (3) 

here �s θ (h, w ) = s θ (h, w ) − log (kP n (h )) denotes the difference in

he scores of the context node h under the training model θ and 

he noise distribution P n (h ) . The scaling coefficient k denotes that 

he number of samples from the noise distribution is k times more 

requent than those from the data distribution. Moreover, σ (·) de- 

otes the sigmoid function σ (x ) = 

1 
1+ exp (−x ) 

. With DeepWalk as 

n instance, the context nodes h are sampled from the truncated 

andom walk sequence ( P d (h | w ) ), while the negative nodes h ′ are

ampled from the node-degree distribution raised to the 3/4th 

ower ( P n (h ) ). The objective is to fit the conditional probability

odel P θ (h | w ) of Eq. (2) to P d (h | w ) [7] . 

.2. Negative Sampling 

NCE can be considered as to approximately maximize the log 

ikelihood of Eq. (1) , while graph representation learning model 

s only concerned with the high-quality node representations [36] . 

hus, while ensuring the high quality of node representations, NCE 

an be further simplified by omitting the numerical probability of 

he noise distribution and holding merely the negative samples, 



Y. Wang, L. Hu, W. Gao et al. Pattern Recognition 136 (2023) 109266 

t

c

J

w  

d  

t  

t

v

s

t

t

4

m

t

i

m

e

T

a

b

n  

u

T

N

d

d

n

f

fi

t

s

t

i

f

J

o

f

T

P  

t

F  

r

s

T

a

t

d

i

s

4

a

e

d

a

a

s

s

s

i

u

w

e

s

z

z

w

o

t

i

o  

t  

i

e

s

t  

n

θ
n

w

P

5

a

e

l

5

n

i

e

a

t

a

z

ermed as Negative sampling, or NEG [7,8,36] . Next, we briefly re- 

all the objective of NEG: 

 

w 

NEG = E h ∼P d (h | w ) [ log σ (z � h z w 

) ] + 

k ∑ 

j=1 

E h ′ ∼P n (h ′ ) [ log σ (−z � h ′ z w 

) ] , 

(4) 

here h ∼ P d (h | w ) denotes that sampling context nodes h from the

ata distribution P d (h | w ) , h ′ ∼ P n (h ′ ) denotes that sampling nega-

ive nodes h ′ from the noise distribution P d (h ′ ) , and z � 
h 

z w 

denotes

he inner product of two node embeddings. Thus, the task is con- 

erted to distinguish between the context nodes h and the negative 

amples h ′ drawn from the noise distribution P n (h ′ ) . In particular, 

he coefficient k denotes sampling k negative nodes for each con- 

ext node. 

.3. From NCE to NEG 

In NCE, the negative nodes are sampled i.i.d. from the static 

arginal distribution P n (h ′ ) . Indeed, NEG, as the simplification, has 

he same assumption and further theoretically assumes that P n (h ′ ) 
s a uniform distribution. The next theorem shows that NCE can be 

athematically converted to NEG with a uniform sampling strat- 

gy. 

heorem 1. Let Eqs. (3) and (4) be the objective functions of NCE 

nd NEG, respectively, where P n (·) denotes the negative noise distri- 

ution and k denotes the scaling coefficient, and |V| be the size of the 

ode set V . NEG is a particular case of NCE, if k = |V| and P n (·) is the

niform distribution. 

Proof of Theorem 1 is given in Appendix A. According to 

heorem 1 , we know that NEG is mathematically a special case of 

CE with the uniform sampling strategy over the static marginal 

istribution. 

However, uniformly sampling negatives from static marginal 

istribution P n (h ′ ) may not the optimal manner for learning the 

ode representations. For instance, prior work has shown the ef- 

ectiveness of dynamic hard negatives in the information retrieval 

eld [30,31,33] . In this work, we similarly explore sampling nega- 

ive nodes from the conditional distribution on the current training 

tate. 

Suppose we define a noise distribution P n (h | w ) conditioned on 

he representation of the anchor node w under the current train- 

ng state. Then, we can rewrite the objective function of NEG as 

ollows: 

 

w 

NEG = E h ∼P d (h | w ) [ log σ (z � h z w 

) ] + 

k ∑ 

j=1 

E h ′ ∼P n (h ′ | w ) [ log σ (−z � h ′ z w 

) ] . 

(5) 

Next, to identify the importance of adaptive negative sampling 

n the conditional distribution, we show the optimization objective 

or node representation on NEG as follows: 

heorem 2. Let Eq. (5) be the objective function of NEG, where 

 d (h | w ) denotes the positive data distribution and P n (h | w ) denotes

he negative noise distribution, and s θ (h, w ) be the scoring function. 

or each pair of anchor node w and context node h , the optimal rep-

esentation vectors satisfy: 

 θ (h, w ) = − log 
kP n (h | w ) 

P d (h | w ) 
. (6) 

Proof of Theorem 2 is given in Appendix B. According to 

heorem 2 , we can clearly identify that sampling negative ex- 

mples conditioned on the node representations in the current 
4 
raining state has the same importance as positive samples. In- 

eed, the adaptive conditional distribution may significantly facil- 

tate the optimization of the node representations more than the 

tatic marginal distribution. 

.4. The Principle of Negative Sampling Strategy 

After determining the importance of adaptively sampling neg- 

tive examples, the following query is raised: how to specify an 

ffective adaptive negative sampling distribution? In response, we 

emonstrate that the vanishing gradient problem can be solved 

nd convergence can be sped up by adaptively sampling hard neg- 

tives from a stochastic gradient descent (SGD) optimization per- 

pective. In this case, Hard negatives are samples with higher 

cores or samples located closer to the anchor in the embedding 

pace. Intuitively, discriminating similar samples can provide more 

nformation to the model than random samples, hence speeding 

p the optimization. 

The gradient of objective function of NEG is: 

∂J NEG 

∂θ
= (σ ( z h 

� z w 

) − 1) 
∂ z h 

� z w 

∂θ
+ k 

∑ 

h ′ 
σ ( z h ′ 

� z w 

) 
∂ z h ′ 

� z w 

∂θ
, (7) 

here θ denotes the parameters of the encoder model, e.g., node 

mbedding lookup. 

Given a set of (w, h, h ′ ) uniformly sampled in a batch, the 

tochastic gradient descent step is performed as follows: 

 

new 

h 
← z old 

h 
− η(σ (z � 

h 
z w 

) − 1) z w 

, 

 

new 

h ′ ← z old 
h ′ − η(σ (z � 

h ′ z w 

)) z w 

, 
(8) 

here η is the learning rate. The representation learning model is 

ptimized by looping over the above Eq. (8) . We can notice that 

he gradient magnitude of the embedding for the negative sample 

s dependent on the score (e.g., inner product) with the embedding 

f the anchor point σ (z � 
h ′ z w 

) . It is obvious that if σ (z � 
h ′ z w 

) is close

o 0, nothing can be learned from the sampled case (w, h ′ ) due to

ts vanishing gradient. Therefore, to alleviate the vanishing gradi- 

nt problem and speed up the model updating, nodes with higher 

cores should be sampled with greater probability. This motivates 

hat sampling the hard examples h ′ to the anchor w . It is worth

oting that the score depends on the current model parameters 

, and thus the negative sampling distribution is adaptive and dy- 

amic in the learning process. Formally, given the anchor node w , 

e define the adaptive negative sampling distribution as follows: 

 n (h | w ) = 

z h 
� z w ∑ 

h ′ ∈V z h ′ � z w 

. (9) 

. AdaNS: A New Strategy 

With the theoretical findings above, we propose an efficient 

daptive negative sampling strategy under the noise contrastive 

stimation framework for unsupervised graph representation 

earning. 

.1. An Efficient Adaptive Negative Sampling Strategy 

We deduce that sampled negative examples should be hard 

egatives close to the anchor in Eq. (9) , however, each sampling 

nvolves calculating all examples and requires O (|V| · d) time. To 

fficiently sample negative examples, in this work, we propose an 

pproximate negative sampling strategy that formalizes the nega- 

ive sampling distribution as a mixing distribution on dimensions. 

Firstly, let the inner products in the scoring function above be 

 matrix factorization as follows: 

 

� 
h z w 

= 

d ∑ 

f=1 

z h , f z w , f , (10) 
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Table 2 

Statistics of datasets. 

Task Datasets #Nodes #Edges #Labels #Features 

Shallow 

Network 

Embedding 

Cora-WF 2,708 5,429 7 –

Wiki 2,405 15,985 19 –

PPI 3,890 76,584 50 –

BlogCatalog 10,312 333,983 39 –

GNNs 

Embedding 

Cora 2,708 5,429 7 1,433 

CiteSeer 3,327 4,732 6 3,703 

PubMed 19,717 44,338 3 500 
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here d is the dimension of node embeddings. The negative sam- 

ling distribution is defined as follows: 

 n (h | w ) = 

∑ d 
f=1 z h , f z w , f 

∑ 

h ′ ∈V 
∑ d 

f=1 z h ′ , f z w , f 

= 

∑ d 
f=1 z h , f z w , f 

∑ d 
f=1 

∑ 

h ′ ∈V z h ′ , f z w , f 

= 

d ∑ 

f=1 

z h , f z w , f ∑ 

h ′ ∈V z h ′ , f z w , f 

= 

d ∑ 

f=1 

∣∣z w , f 

∣∣sgn ( z w , f ) 
z h , f ∑ 

h ′ ∈V z h ′ , f 

, (11) 

here sgn (·) denotes the sign of the scalar. 

Assume that node embedding vectors for each dimension f fol- 

ow the normal distribution 

1 , the sampling probability can be de- 

ned as the mixing distribution as follows: 

 n (h | w ) = 

d ∑ 

f=1 

p( f | w ) p(h | w, f ) , (12) 

here p( f | w ) denotes the importance of the dimension f for em- 

edding vector of node w . 

Following Eqs. (11) and (12) , the probability function can be 

efined as follows: 

p( f | w ) ∝ 

∣∣z w , f 

∣∣, (13) 

p(h | w, f ) = sgn ( z w , f ) 
z h , f ∑ 

h ′ ∈V z h ′ , f 

. (14) 

It worth noting that the elements of node vectors can be nega- 

ive. To feasibly calculate the probability function, p(h | w, f ) can be 

urther defined as follows: 

p(h | w, f ) = σ ( sgn ( z w , f ) z h , f ) = 

exp ( sgn ( z w , f ) z h , f ) ∑ 

h ′ ∈V exp (sgn ( z w , f ) z h ′ , f ) 
. (15) 

.2. The Proposed AdaNS Algorithm 

We summarize the sampling process from the mixing distribu- 

ion, and the detailed pseudocode is shown in Algorithm 1 . 

lgorithm 1 The training process of AdaNS. 

1: Initialize parameter of Encoder θ
2: repeat 

3: for each node w do 

4: Draw a positive sample h from P d (h | w ) 

5: Draw a dimension factor f from P ( f | w ) ∝ 

∣∣z w , f 

∣∣
6: Draw a negative sample h ′ from P (h ′ | w, f ) (Eq. (15)) 

7: Update θ by Stochastic Gradient Descent (Eq. (8)) 

8: until Early Stopping or Maximum of Epoch 

. Experiments 

To comprehensively assess the proposed negative sampling 

trategy, we conduct both node classification and node visualiza- 

ion on seven commonly used graph datasets. We apply our pro- 

osed strategy and seven negative sampling baselines to represen- 

ative shallow network embedding and GNNs embedding models, 
1 In practice, the node vectors for each dimension follow the standard normal 

istribution. 

p

d

e

w

5 
.g., DeepWalk [7] and GraphSAGE [5] , to learn node representa- 

ions. The desired node representation would preserve more infor- 

ation, thereby achieving a higher classification performance and 

 more distinguishable node visualization. 

.1. Datasets 

We evaluate the proposed negative sampling strategy with 

even public graph datasets applied to two embedding tasks, re- 

pectively. Specifically, we use four graph datasets that have no 

eatures to learn node embeddings with preserved graph structure. 

n addition, we use three graph datasets containing both features 

nd graph structure to deploy GNNs-based node embedding tasks. 

or clarity, we summarize the statistics of seven datasets in Table 2 

nd describe in detail the characteristics of each dataset as follows: 

We first describe four datasets without node features for shal- 

ow network embedding. 

• Cora-WF [37] : Cora is a research paper set, where nodes and 

edges stand for machine learning papers and citation relation- 

ships, respectively. It has 2,708 papers grouped in 7 classes and 

5,429 relationships between them. 
• Wiki [38] : Wiki is a network of web pages with hyperlinks. It 

contains 2,405 web pages divided into 19 categories and 15,985 

links between them. 
• PPI [39] : PPI is a subgraph of the Protein-Protein Interac- 

tions network for Homo Sapiens. There are 3,890 nodes clas- 

sified into 50 categories according to their biological states and 

76,584 edges. 
• BlogCatalog [40] : BlogCatalog is a social blogger network. It has 

10,312 bloggers and 333,983 social relationships between them. 

Besides, 39 interested topics submitted by bloggers are consid- 

ered as labels. 

Then, we describe three datasets with node features for GNNs 

mbedding, namely Cora, Citeseer , and Pubmed . These three ci- 

ation networks are standard graph benchmark datasets [37] . In 

hese datasets, nodes represent papers, and edges refer to citation 

elations. And the bag-of-words representations of papers are con- 

idered as node features. 

.2. Shallow Network Embedding 

We first evaluate the proposed negative sampling strategy in 

he shallow network embedding model. Specifically, the shallow 

etwork embedding model is characterized by embedding lookup 

ables containing node embeddings as row or column vectors, 

hich are treated as parameters and can be updated during the 

raining process [7,11] . We use the classical model named Deep- 

alk [7] as the backbone model and deploy various negative sam- 

ling strategies on it. Theoretically, DeepWalk uses truncated ran- 

om walks to capture context nodes and then optimizes node 

mbedding by maximizing the co-occurrence probability of nodes 

ith their contexts, which is measured by normalizing the scores 
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t

ones, as negatives. 
etween nodes and their contexts. In practice, the scoring is im- 

lemented as an inner product of node embeddings, and the opti- 

ization objective is to maximize the score between a node and 

ts contexts and minimize the score between the node and its 

ampled negative nodes, that is, to be close to the context nodes 

nd push apart the negatives in the embedding space. Thus, the 

earned node embeddings would preserve the information of the 

raph structure. Then, we evaluate negative sampling strategies by 

inear classification on the learned embeddings. 

.2.1. Baselines for DeepWalk 

We include the following two groups of negative sampling 

trategies as baselines. 

Static Negative Sampling Strategies 

• RNS [28] : Random negative sampling (RNS) is one prevalent 

strategy to sample negative nodes with uniform distribution. 
• Degree-based Negative Sampling [8] : This strategy is widely 

used in the field of graph representation learning. It biases the 

uniform distribution to the node-degree distribution raised to 

the 3/4rd power. 

Hard-based Negative Sampling Strategies 

• DNS [30] : Dynamic negative sampling (DNS) is a state-of-the- 

art sampling strategy for collaborative filtering, which adap- 

tively picks the negative item scored highest by the current 

recommender among a randomly sampled set of unobserved 

items. 
• WARP [31] : The weighted approximate-rank pairwise (WARP) 

adopts uniform sampling with rejection to draw informative 

negative samples, whose score should be larger than the pos- 

itive one. 
• KBGAN [33] : Such model is an adversarial sampler, which uni- 

formly randomly samples N s negative examples to calculate the 

probability of generating negative samples. 

.2.2. Implementation Details for DeepWalk 

For fairness, the number of dimensions is set to be the same 

128) for all negative sampling strategies. When sampling negative 

odes, we set the number of negative nodes as 1. The size of the 

nobserved item set in DNS is set to 5 for all datasets. The max- 

mal trial of sampling in WARP is set to 50 for efficiency. N s , the

umber of negative items sampled in KBGAN is set to 10. The im- 

lementation program is based on Tensorflow. We train all models 

or a maximum of 200 epochs and use the early stopping strat- 

gy with a patience of 20 epochs. The optimizer adopts Adam to 

pdate model parameters, and the learning rate is 0.001. 

In the node classification task for DeepWalk, logistic regression 

s adopted as a supervised classifier. In detail, we randomly select 

 f from 10% to 90% fraction of the labeled nodes as the training set 

nd the remaining nodes as the test set. The performance of the 

ode classification is assessed by the Micro- F 1 score and Macro- 

 1 score. The formulas of Micro- F 1 and Macro- F 1 are: 

icro- F 1 = 

2 

∑ z 
i =1 T P i ∑ z 

i =1 2 T P i + F P i + F N i 

, 

acro- F 1 = 

1 

z 

z ∑ 

i =1 

2 T P i 
2 T P i + F P i + F N i 

, 

here z denotes the number of labels, T , F , P , and N denote True,

alse, Positive, and Negative, respectively. We repeat the trial 10 

imes and report the average scores with different training ratios. 

.2.3. Classification Results of DeepWalk 

Tables 3–6 report the performance of AdaNS in comparison to 

aseline strategies. Notably, the best results are shown in bold. 
6 
rom the results, we can draw the following observations and con- 

lusions. 

• For static samplers, the Degree-based negative sampling model 

achieves higher Micro- F 1 and Macro- F 1 results compared with 

RNS in most cases. It demonstrates that the Degree-based neg- 

ative sampling strategy can alleviate the vanishing gradient 

problem caused by RNS, thereby improving the performance of 

the node representations. 
• The adaptive samplers such as DNS, KBGAN, and WARP out- 

perform the static samplers in most cases, suggesting that dy- 

namically sampling the hard negatives is better than the prede- 

fined static distributions. DNS achieves performance over other 

baselines second only to AdaNS on Cora, Wiki, and BlogCatalog, 

which proves that drawing negative samples with the highest 

scores in the subset is beneficial to improving model perfor- 

mance. The performance achieved by both KBGAN is unstable, 

only surpasses RNS consistently, and is inferior to the Degree- 

based model on the Wiki and PPI datasets. This may be because 

KBGAN is essentially equivalent to importance sampling in sub- 

sets, and thus its performance is highly dependent on the sam- 

pling of subsets by uniform sampling. WARP outperforms RNS 

and Degree-based strategies in almost all cases and KBGAN in 

75% of cases, but its performance is lower than that of DNS be- 

cause its rejection sampling makes it difficult to sample match- 

ing nodes before the patient round after the model has been 

trained to a certain level, which hinders its further performance 

improvement. 
• AdaNS achieves more satisfactory performance over baselines, 

especially on the BlogCatalog, where AdaNS consistently out- 

performs all baselines regardless of training set ratios as well 

as metrics. It indicates that our proposed mixing distribution 

sampling is more effective than existing adaptive samplers and 

static samplers. 

.3. GNNs Embedding 

Different from the shallow network embedding models, GNNs 

mbedding models can utilize graph features more effective. The 

asic idea of GNNs is iteratively aggregating node feature in- 

ormation from the neighborhood to yield continuous smoothing 

ode embeddings over the graph structure, which is the message- 

assing framework [2,5,6] . In this experiment, we adopt the Graph- 

AGE [2] as the backbone model due to its two advantages: 1) It 

aptures contextual nodes by sampling the neighborhood, which is 

ore efficient than the classical message-passing scheme; 2) it has 

oth unsupervised learning and supervised learning training im- 

lementations, which will yield more intuitive node visualization 

esults. 

It is noting that any current SOTA GNN methods can be used 

s the encoder in the unsupervised contrastive paradigm, just like 

raphSAGE, thus AdaNS can improve the overall model equipped 

ith any elaborate message-passing scheme. 

.3.1. Baselines for GraphSAGE 

For baselines, beyond those mentioned above, we further add 

wo following semi-hard strategies: 

• InterCLR [34] : InterCLR presents a semi-hard negative sampling, 

which first samples a pool with the top 10% most similar exam- 

ple and then randomly draws negatives from the pool. 
• Ring [35] : Ring argues that the most similar examples might be 

better suited as positive examples rather than negative ones. 

Therefore, it chooses fairly similar examples, but not too hard 
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Table 3 

Node classification results of DeepWalk on Cora. 

Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Degree 0. 6103 0. 6880 0. 7099 0. 7305 0. 7312 0. 7399 0. 7540 0. 7454 0. 7565 

RNS 0. 6354 0. 6908 0. 7157 0. 7262 0. 7201 0. 7269 0. 7466 0. 7565 0. 7565 

Micro- F 1 DNS 0. 6920 0. 7310 0. 7511 0. 7588 0. 7696 0. 7694 0. 7835 0. 7768 0. 8007 

KBGAN 0. 6505 0. 7084 0. 7215 0. 7317 0. 7341 0. 7380 0. 7417 0. 7399 0. 7528 

WARP 0. 6707 0. 7116 0. 7409 0. 7480 0. 7631 0. 7648 0. 7586 0. 7556 0. 7648 

AdaNS 0. 6924 0. 7476 0. 7574 0. 7717 0.7792 0. 7749 0.7872 0.7970 0.8229 

Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Degree 0. 5756 0. 6736 0. 6904 0. 7091 0. 7119 0. 7306 0. 7372 0. 7432 0. 7329 

RNS 0. 6185 0. 6828 0. 7056 0. 7135 0. 7104 0. 7093 0. 7326 0. 7377 0. 7091 

Macro- F 1 DNS 0.6755 0. 7197 0. 7383 0. 7484 0. 7576 0. 7584 0. 7673 0. 7612 0. 7717 

KBGAN 0. 6285 0. 6971 0. 7077 0. 7217 0. 7234 0. 7241 0. 7315 0. 7300 0. 7109 

WARP 0. 6532 0. 7028 0. 7286 0. 7417 0. 7508 0. 7555 0. 7455 0. 7435 0. 7556 

AdaNS 0. 6754 0.7368 0. 7471 0.7607 0.7663 0. 7644 0.7801 0.7795 0.7898 

Table 4 

Node classification results of DeepWalk on Wiki. 

Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Degree 0. 5630 0. 5962 0. 6105 0. 6334 0. 6509 0. 6632 0. 6648 0. 6694 0. 6349 

RNS 0. 5303 0. 5998 0. 6188 0. 6202 0. 6467 0. 6414 0. 6371 0. 6528 0. 6390 

Micro- F 1 DNS 0. 5557 0. 6107 0. 6366 0. 6542 0. 6717 0. 6663 0. 6787 0. 6861 0. 6390 

KBGAN 0. 5644 0. 6081 0. 6229 0. 6286 0. 6517 0. 6486 0. 6537 0. 6549 0. 6100 

WARP 0. 5636 0. 6072 0. 6257 0. 6324 0. 6585 0. 6662 0. 6804 0. 6825 0. 6115 

AdaNS 0.5686 0.6201 0. 6449 0. 6694 0.6733 0. 6684 0. 6814 0.6882 0.6681 

Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Degree 0. 3975 0. 4740 0. 5084 0. 5105 0. 5322 0. 5261 0. 5634 0. 5730 0. 5275 

RNS 0. 3847 0. 4559 0. 5043 0. 5179 0. 5349 0. 5264 0. 5381 0. 5326 0. 5341 

Macro- F 1 DNS 0. 4206 0. 5010 0.5362 0. 5350 0. 5554 0. 5634 0. 5773 0. 5940 0. 5414 

KBGAN 0. 4293 0. 4774 0. 5113 0. 5197 0. 5442 0. 5263 0. 5397 0. 5308 0. 5003 

WARP 0. 4262 0. 4839 0. 5194 0. 5290 0. 5304 0. 5419 0. 5508 0. 5676 0. 5275 

AdaNS 0. 4030 0. 4663 0. 5338 0.5659 0.5586 0. 5497 0.5836 0.5961 0. 5564 

Table 5 

Node classification results of DeepWalk on PPI. 

Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Degree 0.1668 0.1802 0.1976 0.1994 0. 2141 0. 2101 0. 2149 0. 2229 0. 2496 

RNS 0.1595 0.1753 0.1882 0.1934 0. 2010 0. 2041 0. 2105 0. 2148 0. 2237 

Micro- F 1 DNS 0.1691 0.1994 0.1966 0. 2012 0. 2108 0. 2214 0. 2221 0. 2226 0. 2237 

KBGAN 0.1702 0.1791 0.1886 0.1904 0. 2043 0. 2082 0. 2193 0. 2185 0. 2323 

WARP 0.1733 0.1951 0.1959 0.1977 0.1996 0. 2058 0. 2248 0. 2225 0. 2338 

AdaNS 0.1803 0.1988 0.2085 0. 2197 0.2255 0. 2315 0.2379 0.2331 0. 2439 

Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Degree 0.1228 0.1396 0.1567 0.1633 0.1756 0.1750 0.1736 0.1755 0.1982 

RNS 0.1207 0.1363 0.1464 0.1544 0.1637 0.1703 0.1739 0.1713 0.1905 

Macro- F 1 DNS 0.1197 0.1393 0.1401 0.1455 0.1499 0.1554 0.1573 0.1579 0.1594 

KBGAN 0.1269 0.1405 0.1493 0.1563 0.1707 0.1773 0.1762 0.1735 0.1808 

WARP 0.1318 0.1345 0.1455 0.1476 0.1511 0.1564 0.1729 0.1747 0.1775 

AdaNS 0.1340 0.1471 0.1607 0.1745 0.1754 0.1843 0.1849 0.1786 0.1901 

Table 6 

Node classification results of DeepWalk on BlogCatalog. 

Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Degree 0. 2911 0. 3246 0. 3427 0. 3557 0. 3635 0. 3661 0. 3754 0. 3825 0. 4018 

RNS 0. 3026 0. 3289 0. 3483 0. 3556 0. 3589 0. 3628 0. 3680 0. 3781 0. 3762 

Micro- F 1 DNS 0. 3494 0. 3743 0. 3845 0. 3888 0. 3876 0. 3971 0. 3981 0. 4071 0. 4118 

KBGAN 0. 2911 0. 3261 0. 3470 0. 3599 0. 3612 0. 3720 0. 3790 0. 3911 0. 4031 

WARP 0. 2906 0. 3220 0. 3471 0. 3532 0. 3578 0. 3802 0. 3896 0. 4015 0. 4053 

AdaNS 0.3576 0. 3819 0.3880 0.3957 0.3986 0. 4075 0. 4167 0. 4279 0. 4280 

Measure Strategies 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Degree 0.1677 0.1968 0. 2115 0. 2381 0. 2312 0. 2306 0. 2401 0. 2416 0. 2755 

RNS 0.1702 0.1975 0. 2200 0. 2229 0. 2237 0. 2300 0. 2492 0. 2538 0. 2633 

Macro- F 1 DNS 0.1869 0. 2193 0. 2322 0. 2409 0. 2393 0. 2517 0. 2518 0. 2701 0. 2847 

KBGAN 0.1693 0.1999 0. 2138 0. 2221 0. 2248 0. 2323 0. 2394 0. 2595 0. 2793 

WARP 0.1915 0.1988 0. 2242 0. 2408 0. 2382 0. 2383 0. 2470 0. 2638 0. 2848 

AdaNS 0. 2017 0.2367 0. 2449 0. 2473 0. 2477 0. 2649 0.2766 0. 2913 0.2930 

7 
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Table 7 

The classification accuracy results of GraphSAGE with various negative sampling strategies. 

Strategies Cora Citeseer Pubmed 

full random public full random public full random public 

Degree 0.815 0.75 0.768 0.694 0.613 0.615 0.821 0.755 0.778 

RNS 0.799 0.747 0.749 0.69 0.592 0.639 0.817 0.724 0.758 

DNS 0.779 0.754 0.739 0.674 0.589 0.588 0.815 0.745 0.751 

KBGAN 0.797 0.759 0.744 0.664 0.584 0.589 0.822 0.755 0.767 

InterCLR 0.819 0.769 0.762 0.689 0.61 0.621 0.822 0.756 0.788 

Ring 0.817 0.756 0.775 0.69 0.628 0.65 0.824 0.77 0.784 

AdaNS 0.833 0.78 0.779 0.704 0.633 0.653 0.826 0.76 0.792 
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.3.2. Implementation Details for GraphSAGE 

We implement the negative sampling strategies on top of the 

nsupervised GraphSAGE [5] . For GraphSAGE, the mean-aggregator 

s used in our experiments. We set the dimension of the hid- 

en layer as 64. In training, we use SGD with a learning rate of 

.01 and no weight decay for 100 epochs and batch size 256. For 

ing, we set the upper percent as 90%. For three citation network 

atasets, we use the default three splits, namely full, random, and 

ublic [41] . We evaluate the performance of models by node clas- 

ification accuracy. 

.3.3. Classification Results of GraphSAGE 

We report the classification results of GraphSAGE with various 

egative sampling strategies in Table 7 . The best results in each 

etting are shown in bold. From the results, we can obtain the fol- 

owing observations. 

• For two static negative sampling strategies, namely Degree and 

RNS, the results are lower than most semi-hard-based strategies 

but higher than hard-based ones. Specifically, the performance 

of Degree outperforms RNS in eight of nine settings, which 

implies that the node-degree-based negative sampling strategy 

benefits node representation learning in the GNNs model. 
• We can observe that two semi-hard-based strategies, namely 

InterCLR and Ring, are superior to two hard-based strategies, 

namely DNS and KBGAN. This phenomenon is attributed to the 

fact that the message-passing scheme in GNNs constrains the 

smoothness of the neighboring nodes, making their representa- 

tions more similar. Since GNNs follow the assumption of homo- 

geneity [42] , i.e., neighboring nodes are more likely to belong to 

the same class, the most similar nodes, or the hardest nodes, 

are more likely to be positive examples, which deviates from 

the hard-based negative sampling strategy. To verify the above, 

we study the impact of the message-passing scheme in GNNs 

on the hard-based negative sampling strategies. Specifically, we 

adopt node embeddings learned on DeepWalk and GraphSAGE 

with 50 epochs and then choose the 100 most similar nodes for 

each anchor, where the nodes with the same class as the an- 

chor are regarded as positive samples. Finally, we calculate the 

frequency of positive samples for each node. As shown in Fig. 1 , 

we plot the histograms of positive sample frequencies of Deep- 

Walk or GraphSAGE on Cora. We can observe that the node em- 

beddings learned by GraphSAGE based on the message-passing 

scheme significantly increase the frequency of positive samples 

among similar nodes compared to DeepWalk, which accord- 

ingly means that the negative sampled on hard-based strategies 

are more likely false negative samples. Therefore, appropriately 

relaxing the hardness, such as by using the strategy based on 

semi-hard, achieves superior classification performance. 
• Our proposed strategy adaptively samples negatives from the 

mixing distribution, which enables our strategy to sample hard 

negative examples. Moreover, our strategy focuses on only 

some of the dimensional elements, which can be considered 

a hardness relaxation, so our proposed strategy can also be 
8 
viewed as a semi-hard sampling strategy. Such a property fa- 

cilitates the node classification in GNNs, and thus our proposed 

AdaNS achieves superior classification performance in eight of 

nine settings. 

.4. Graph Visualization 

To evaluate the qualities of node representations, visualization 

s the most common task. In the visualization task, we employ the 

-distributed stochastic neighbor embedding (t-SNE) [43] , a nonlin- 

ar dimension reduction and visualization approach, to transform 

he node representations into a 2-dimensional space. 

First, we aim to evaluate the impact of different negative sam- 

ling strategies on the discriminability of node representations. 

pecifically, we deploy different negative sampling strategies on 

op of the GraphSAGE model to learn node representations on the 

ora dataset. Furthermore, to improve the quality of visualization, 

e adopt a semi-supervised GraphSAGE in this experiment, which 

ncludes both supervised loss and unsupervised loss to train the 

odel jointly. It is worth noting that since InterCLR can theoreti- 

ally be considered as a special case of Ring [35] , and the visual-

zation of node representations learned by InterCLR is very similar 

o that learned by Ring, we exhibit them jointly in a view. The 

isualization results are shown in Fig. 2 , where different colors de- 

ote nodes in different categories, and the symbol ”x” denotes the 

luster centroid of each category. The centroid can take into ac- 

ount the nodes that deviate from the cluster, thus measuring the 

iscriminability of the nodes globally. Geometrically, a larger re- 

ion enclosed by cluster centroids indicates better discriminabil- 

ty. We plot the geometrically enclosed region of AdaNS in red and 

hose of the baselines in black. We can observe that the area of the 

eometrically enclosed region generated by our proposed AdaNS 

xceeds all baselines. Numerically, we measure the discriminabil- 

ty of node representations via the mean distance between the 

airwise cluster centroids, where a larger distance indicates that 

he node representations preserve better discriminability, and vice 

ersa indicates lower discriminability, namely, that nodes of differ- 

nt classes tend to be mixed. We annotate the numerical results of 

he centroid distance, and the results show that the node represen- 

ation generated by AdaNS has the largest value, which confirms 

he superiority of AdaNS. 

Next, we study the sampling effects in practice using various 

ampling strategies. Specifically, we randomly sample a batch of 

00 nodes from the Cora dataset. Given the anchor node, we use 

arious sampling strategies to draw 10 negative samples respec- 

ively. A visualization of the sampling results in the embedding 

pace is shown in Fig. 3 . It is worth noting that in the embedding

pace, close nodes indicate similarity. We can find that both Degree 

nd RNS statically sample negative nodes approximately at random 

ithin the whole batch. In contrast, DNS clearly tends to select the 

losest nodes, and KBGAN can be seen as a relaxed variant of DNS, 

hich has the potential to select the more distant nodes as neg- 
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Fig. 1. Positive samples histograms of models with DeepWalk or GraphSAGE as encoders on Cora. 

Fig. 2. Visualization of node representations on Cora dataset. Different colors denote different categories of nodes. 
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tive samples. While Ring, InterCLR, and AdaNS tend to select the 

odes that are relatively closest, but at a certain distance. 

.5. Study and Analysis 

.5.1. Classification Quality 

Figure 4 presents the classification quality as a function of 

raining epochs. We conduct experiments on top of DeepWalk and 
9 
raphSAGE, on Cora dataset with {10%, 50%, 90%} training set and 

hree splits, respectively. As shown in Fig. 4 (a), (c) and (e), the 

erformance on DeepWalk with adaptive strategies such as DNS, 

ARP, KBGAN, and AdaNS, are drastically increased in the early 

raining process compared to the static strategies. This demon- 

trates that sampling hard negatives improve both the effective- 

ess and efficiency of the model. Besides, we observe that DNS 

nd WARP, after peaking in performance, begin to degrade as they 
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Fig. 3. Visualization of various negative sampling strategies in the embedding space. Given an anchor node (red dot), we draw negative samples (blue dots) with different 

strategies. 
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re over-trained. In contrast, our proposed AdaNS, after efficiently 

chieving optimal performance, remains in a stable state as train- 

ng proceeds. As for GraphSAGE in Fig. 4 (b), (d) and (f), due to

he message-passing scheme, neighboring nodes that tend to be- 

ong to the same category naturally have high similarity, so most 

f the strategies achieve good accuracy at the early stage of train- 

ng, where the adaptive strategies still show the higher ceiling. And 

s the training proceeds, the strategies based on static distribution, 

.e., Degree and RNS, exhibit lackluster performance. In particular, 

NS still declines sharply after reaching peak performance, even 

arlier than on DeepWalk, due to the smoothness of the message- 

assing scheme in GNNs. In contrast, semi-hard-based strategies 

chieve more stable performance. 

.5.2. Training Loss 

To investigate the effect of adaptive negative sampling on alle- 

iating vanishing gradient, we experimentally record the training 

oss as a function of training epochs for various negative sampling 

trategies on the Cora dataset. As shown in Fig. 5 , we can observe

hat the adaptive sampling strategy can better optimize the train- 

ng loss compared to the two static sampling strategies, Degree and 

NS. Taking AdaNS as a benchmark, we can see the obvious fluc- 
10 
uation of DNS, which is due to its hard-based sampling strategy 

hat mistakenly selects positive samples as negative samples dur- 

ng training. In contrast, KBGAN, InterCLR, and Ring exhibit more 

table training losses. In particular, in Fig. 5 (a), we can observe that 

he training loss of WARP decreases slowly since its negative nodes 

ampled must be larger than the positive ones, which inevitably 

ample a lot of false negatives. In contrast, DNS consistently sam- 

les the hardest negative nodes, resulting in a rapid and continu- 

us decrease in training loss. In conclusion, adaptive negative sam- 

ling strategies are able to obtain lower training losses faster and 

ore consistently, which demonstrates the capability to mitigate 

he vanishing gradient problem. 

.5.3. Efficiency Analysis 

Adaptive sampling is time-consuming in comparison to static 

ampling while improving performance, hence the efficiency of 

ampling negatives is critical. The average running time per epoch 

or adaptive strategies is summarized in Fig. 6 . As the rejection 

echanism of WARP increases in difficulty as training progresses, 

e adopt the average running time per epoch for a fair compari- 

on. From the figure, we can find that the running time of AdaNS 

s the least, while WARP takes the most running time, due to its 
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Fig. 4. The classification quality as a function of training epochs. 

Fig. 5. The training Loss as a function of training epochs. 
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ejection mechanism. Both DNS and KBGAN calculate the proba- 

ility of the negative samples from a subset of candidates, while 

BGAN is the relatively more efficient strategy. In short, the pro- 

osed adaptive sampling strategy AdaNS is satisfactory in terms 

f performance and efficiency compared to other state-of-the-art 

trategies. 
11 
. Conclusion and Discussions 

Summary. In this paper, an adaptive negative sampling strat- 

gy, named AdaNS, for unsupervised graph representation learn- 

ng is proposed. Different from the existing strategies that sample 

andomly negative nodes, AdaNS adopts an efficient and effective 
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Fig. 6. The running time per epoch for different negative sampling strategies. Note 

that the unit of time for BlogCatalog is minutes, while the unit of time for the other 

datasets is seconds. 
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ay to implement negative sampling by drawing hard negatives 

rom the mixing distribution with respect to the dimensional ele- 

ents in the node vectors. We conduct experiments on node clas- 

ification and visualization tasks to evaluate the proposed strategy. 

he experimental results on seven benchmark datasets show that 

daNS is very competitive with state-of-the-art strategies. 

Limitations of this work. There are several limitations from 

heoretical analysis and experimental justification. 1) To make the 

heoretical analysis more feasible, we make a few assumptions. 

e derive the parametric embedding as an instance in our anal- 

sis, since the main focus is the effect of negative samples on the 

radient update. While the experiment results empirically demon- 

trate that our analysis seems to hold with GNN models, more for- 

al investigation for deep neural network models is valuable. 2) 

ur proposed method is only verified on benchmark graphs, while 

here are more challenging in real-world scenarios, e.g., dynamic 

raphs and hypergraphs. Hence, it is crucial to devote more efforts 

o studying more complicated graphs. We believe our findings es- 

ablished a solid foundation for further research. 
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