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Abstract—In this study, we present a transductive inference
approach on that reward information propagation graph, which
enables the effective estimation of rewards for unlabelled data
in offline reinforcement learning. Reward inference is the key
to learning effective policies in practical scenarios, while direct
environmental interactions are either too costly or unethical
and the reward functions are rarely accessible, such as in
healthcare and robotics. Our research focuses on developing a
reward inference method based on the contextual properties
of information propagation on graphs that capitalizes on a
constrained number of human reward annotations to infer
rewards for unlabelled data. We leverage both the available
data and limited reward annotations to construct a reward
propagation graph, wherein the edge weights incorporate various
influential factors pertaining to the rewards. Subsequently, we
employ the constructed graph for transductive reward inference,
thereby estimating rewards for unlabelled data. Furthermore, we
establish the existence of a fixed point during several iterations
of the transductive inference process and demonstrate its at
least convergence to a local optimum. Empirical evaluations
on locomotion and robotic manipulation tasks validate the
effectiveness of our approach. The application of our inferred
rewards improves the performance in offline reinforcement
learning tasks.

Index Terms—Reward propagation graph, reward inference,
offline reinforcement learning.

I. INTRODUCTION

OFFLINE reinforcement learning (RL) problems can be
defined as a data-driven formulation of the reinforcement

learning problem, that is, learning a policy from a fixed dataset
without further environmental input [1], [2], [3]. Reliable
and effective offline RL methods would significantly affect
various fields, including robots [4], [5], autonomous driving [6],
recommendation systems [7], [8], and healthcare [9]. Rewards
are typically necessary for learning policies in offline RL,
but they are rarely accessible in practice, and the rewards for
state-action pairs need to be manually annotated, which is
difficult and time-consuming. Meanwhile, real-world offline
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RL datasets always have a small amount with reward and a
large amount always without reward. Thus, learning a model
from limited data with rewards to label unrewarded data is
critical for learning effective policies to apply offline RL to
various applications.

Typical methods have attempted various types of supervision
for reward learning. The method proposed by [10] and ORIL
[11] learns reward functions and uses them in offline RL.
[10] employs a reward sketching interface to elicit human
preferences and use them as a signal for learning. In reward
sketching, the annotator draws a curve where higher values
correspond to higher rewards. ORIL [11] relies on demonstrated
trajectories to obtain reward functions both from labelled and
unlabelled data at the same time as training an agent. [12]
propose the timestep annotations are binary and treat the reward
prediction as a classification problem to focus on sample
efficiency with limited human supervision.

Reward learning for offline RL is roughly divided into
two categories: timestep-level (e.g., state-action pair reward
annotations for the entire episode produced by humans [10])
and episode-level supervision (e.g., annotations of success for
the whole episode [12], [11]). For episode-level supervision,
[12] assumes rewards are binary, and it indicates if the task is
solved. Episode annotations provide only limited information
about the reward. They indicate that some of the state-action
pairs from the episodes show successful behavior but do
not indicate when the success occurs. So the episode-level
supervision method is not adaptation to any value reward
learning question. For timestep-level annotations, [12] and
[13] need first to annotate demonstrated trajectories that
are the successful trajectories (e.g., expert demonstrations).
[10] employs a reward sketching interface to elicit human
preferences and use them as a signal for learning, but the
method is hard to solve tasks where variable speed is important
or with cycles as in walking. Accordingly, existing methods
are unsuitable for timestep-level reward learning with arbitrary
values in offline reinforcement learning without any expert
trajectories. The manual annotation of rewards for state-action
pairs is costly, making it challenging to learn effective policies
with limited reward labelled data. This makes it challenging to
apply offline reinforcement learning to a variety of scenarios.

In a general sense, offline RL addresses the problem of
learning to control a dynamic system, which is fully defined
by a Markov decision process (MDP). An MDP is a sequential
decision process for state-to-state transitions, which could be
formed as a chain, and multiple chains of multiple MDPs can be
combined to form a graph. In the graph, each node represents a
state-action pair, and each edge is labelled with the probability
of transitioning from one state to another state, given a
particular action. The graph possesses the contextual properties
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Fig. 1. We first represent each state-action pair within a Markov decision process (MDP) as an individual graph node. Then, we establish a foundation
for modeling the state-action sequences across multiple MDPs as interconnected chains. Finally, these chains collectively form a comprehensive graph that
encapsulates the dynamics of multiple MDPs. The graph structure is characterized by connectivity, where each node is connected to multiple other nodes. We
leverage this feature to propagate reward-related information within the graph.

of information propagation, the structure is characterized by
connectivity, where each node is connected to multiple other
nodes. It is convenient to perform inference through a message
passing mechanism, and the inference procedure essentially
propagates information from the state-action pairs with rewards
to the state-action pairs without rewards and results in a reward
function over state-action pairs, as shown in Fig. 1. The model
tries to find any information about the pattern in all state-
action pairs and later uses this information for predicting the
rewards of the unlabelled state-action pairs. Formally, such a
situation requires the learning of a reward model to accurately
predict the rewards for state-action pairs in a specific task,
based on the data that is invariant to the distribution collected
from agent-environment interactions within that task. In this
manner, this situation involves a paradigm of transductive
reward inference1. Meanwhile, the label-efficiency problem
has been successfully addressed by label propagation (LPA)
approaches [14], [15], [16], [17], [18], [19], [20] which is based
on graph models and plays a significant role in leveraging
unlabelled dataset to improve the model performance with
low cost. Label propagation approaches formulate labelled and
unlabelled data as a graph, where nodes represent sample data
and edges represent relationships between nodes, and the node
labels are propagated and aggregated along the edges.

Inspired by the label propagation approaches, we present
TRAIN: Transductive RewArds INference with Propagation
Graph for Offline Reinforcement Learning. Each task is charac-
terized by a unique composition of states with varying features.
We need to infer rewards for a large number of unlabeled state-
action pairs based on a smaller, reward-laden subset specific
to each task. Utilizing transductive inference, we leverage the
graph structure established by MDPs to incorporate information
from all state-action pairs, regardless of whether they have
associated rewards. Although the rewards for most state-action
pairs remain unknown, this graph structure enables us to
effectively propagate the limited available reward information.
Specifically, TRAIN consists of two key ingredients:

1Note that inductive inference usually focuses on building a relationship
between the state feature and reward target by examining the hidden patterns
in the state-action pairs with rewards and then generalizes effectively to unseen
state-action pairs without rewards.

• Reward Propagation Graph: We represent each state-action
pair as a graph node and leverage the similarities and
relationships between them to learn the edge weights of
the nodes. It is worth noting that rewards are influenced by
many factors, and all of the factors should be considered
when learning the reward propagation graph.

• Transductive Reward Inference: We employ the reward
propagation graph to infer rewards for state-action pairs
that are without rewards and then utilize them for doing
offline RL. The reward inference technique propagates
rewards on the graph from state-action pairs with rewards
to state-action pairs without rewards and will converge to
a unique fixed point after a few iterations.

We remark that TRAIN is not a naïve application of the LPA
technique but a novel scalable method of learning propagation
graphs that integrates multiple influence reward factors to edge
weights. The graph sufficiently leverages various relationship
information between nodes, which can make reward inference
more accurate. This has not been considered or evaluated in
the context of offline RL reward learning. We also prove that
the transductive inferred reward has a fixed point and at least
can converge to a local optimum.

Our experiments demonstrate that the state-action pairs la-
beled by TRAIN significantly improve the offline reinforcement
learning method when learning policy with limited reward
annotations on complex locomotion and robotic manipulation
tasks from DeepMind Control Suite [21] and Meta-World [22].
In particular, our method inherits the smooth characteristics of
the LPA method [23], which can make the state-action pairs
with smooth rewards and further make the process of offline
RL algorithm learning policy more stable.

II. RELATED WORK

Offline RL The offline reinforcement learning problem, which
enables learning policies from the logged data instead of
collecting it online, can be defined as a data-driven formulation
of the reinforcement learning problem [1], [2], [3]. It is a
promising approach for many real-world applications. Offline
RL is an active area of research and many algorithms have
been proposed recently, e.g., BCQ [24], MARWIL [25], BAIL
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[26], ABM [27], AWR [28], CRR [29], F-BRC [30]. In this
paper, we adopt CRR as our backbone algorithm due to its
efficiency and simplicity.

Reward learning It is possible to learn the reward signal
even when it is not constantly available in the environment.
The reward can be learned if demonstrations are provided
either directly with inverse RL [31], [32] or indirectly with
generative adversarial imitation learning (GAIL) [33]. The end
goal [34], [35] or reward values [10] for a subset of state-
action pairs can be known, in which case reward functions can
be learned by supervised learning. A significant instance of
learning via limited reward supervision [10] is studied in some
works. Rewards are commonly learned for online RL [36].
While learning from built or pre-trained state representations
[37], [34], [38], [39], [40], [41], [42], [43] has achieved a
lot of success, learning directly from pixel input is known to
be difficult [44] and the quantity of supervision needed may
become a bottleneck [10]. Unlike many other reward learning
approaches for offline RL, we focus on learning rewards with
multi-factors that influenced rewards from limited annotations.

Transduction The setting of transductive inference was
first introduced by Vapnik [45]. Transductive Support Vector
Machines (TSVMs) [46] is a margin-based categorization
technique that reduces test set mistakes. Particularly for short
training sets, it demonstrates considerable advantages over
inductive techniques. Another classification of transduction
methods involves graph-based methods [14], [16], [18], [47],
[48]. Labels are transferred from labelled to unlabelled data
instances through a process called label propagation, which
is driven by the weighted graph. In prior works, the graph
construction is done on a pre-defined feature space using only
a single influence factor between nodes so that it is not possible
to learn multi-factors influenced graph edge weights.

III. PROBLEM FORMULATION

The key to the TRAIN method is the prior assumption of
consistency, which means: (1) nearby states and actions are
likely to have similar or the same reward, and (2) state-action
pairs on the same structure (typically referred to as a cluster or
a manifold) are likely to have the similar or the same reward.
This argument is akin to semi-supervised learning problems
that in [49], [50], [51], [16], [52], [23], [53] and often called
the cluster assumption [16], [51]. Orthodox supervised learning
algorithms, such as k-NN, in general, depend only on the first
assumption of local consistency [16], that is, k-NN makes every
data point be similar to data points in its local neighborhood.
Our method leverages the relation information between states
and actions to formalize the intrinsic structure revealed by
state-action pairs with reward and state-action pairs without
reward and construct a reward inference function.

We assume that the training samples (both with reward
and without reward) are given as D = [(s1, a1), ..., (sZ , aZ)],
where (si, ai) denotes the state-action pair, and D has Z pairs.
Given this, let DL denote the labelled state-action pair set of
D with v pairs, and DU denote the unlabelled state-action pair
set of D with g pairs, that is, DL = [(sL1 , a

L
1 ), ..., (s

L
ZL

, aLZL
)],

DU = [(sU1 , a
U
1 ), ..., (s

U
ZU

, aUZU
)], s.t., ZL + ZU = Z.

The Z rewards are denoted by R = [r1, ..., rZ ], we split
the reward set R into 2-sub-block, RL = [rL1 , ..., r

L
ZL

] denotes
the subset of known rewards and RU = [rU1 , ..., r

U
ZU

] denotes
the subset of unknown rewards. Suppose that we are given a
small set DL of the state-action pairs with reward. The rest
of the state-action pairs DU = D \ DL are without reward.
TRAIN utilizes all samples and known rewards to learn a
reward propagation graph and infer rewards for state-action
pairs that are without reward.

IV. METHODOLOGY

A. Overview

We take advantage of the property of MDPs, where the
reward depends only on the current state and action, as well
as the relationship between states and actions, to construct
a reward propagation graph. We then train this graph by
the state-action pairs with rewards, facilitating transductive
reward inference for unlabeled state-action pairs. In offline
reinforcement learning, such state-action pairs are logged in
dataset D. Practically, dataset D encompasses a wide array
of state-action pairs generated for specific tasks via scripted,
learned policies, and human demonstrations [10].

B. Construct Reward Propagation Graph

The graph possesses the contextual properties of information
propagation and the structure is characterized by connectivity,
which allows it to model the interrelationships between entities
effectively. In a graph, nodes are connected by edges, facili-
tating the transmission of information across nodes through
these connections. Given the limited number of state-action
pairs with rewards, we could learn to infer rewards for those
pairs without rewards. To achieve this, we model state-action
pairs as nodes and construct a reward propagation graph. This
graph leverages the relationships between nodes to transfer
reward-related information from labelled (rewarded) nodes to
unlabelled (unrewarded) nodes.

a) Graph construction: For most reinforcement learning
tasks, rewards are influenced by many factors. For instance, in
task Humanoid, which is part of the DeepMind Control Suite
[21], [54], the state consists of six parts: joint angles, the height
of the torso, extremity positions, torso vertical orientation, the
velocity of the center of mass, and the generalized velocity, and
action also consists of several parts that represent the torques
applied at the hinge joints. The reward is related to the upright
state of the robot, the control operation of the actuator, and
the moving speed, etc., which are closely related to each part
of the above state and action, so we regard each part of the
state and action as a factor that influences the reward.

Specifically, we denote si = [si1 , si2 , si3 , ..., siM ], where
sim is a sub-state with any given dimension, and si con-
sists of M sub-states. Correspondingly, we denote ai =
[ai1 , ai2 , ai3 , ..., aiN ], where ai is all of the actions performed
given state si, and composed of N specific sub-actions of ain .

We design a reward propagation graph construction method
integrating multi-factors influencing the reward to tune the
edge weights. To be specific, we employ a distance function
ρs(sim , sjm),∀ i ̸= j to measure the similarity of the sub-states,
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Fig. 2. TRAIN workflow: The process begins with the construction of a reward propagation graph using a pre-recorded dataset. Subsequently, this graph, in
conjunction with state-action pairs that have rewards, is utilized to infer rewards for state-action pairs that lack rewards. In the final step, all state-action pairs,
both with and without inferred rewards, are integrated into the offline reinforcement learning process.

and also employ a distance function ρa(ain , ajn),∀ i ̸= j to
measure the similarity of the sub-actions, the two distance
function could be Euclidean distance or others. Then, we define
the multi-factor measure for each state-action pair as:

ℓ(Si,Sj) = [ρs(si1 , sj1), ..., ρs(siM , sjM ),

ρa(ai1 , aj1), ..., ρa(aiN , ajN )] ∈ RM+N ,
(1)

where Si = (si, ai) denotes the i-th state-action pair.
Further, we employ a reward shaping function fΘ with the

parameters Θ to tune multi-factors’ contribution to the rewards
and integrate them into the edge weight:

Wij =
exp(−fΘ(ℓ(Si,Sj)))∑
j ̸=i exp(−fΘ(ℓ(Si,Sj)))

,∀ i ̸= j. (2)

where Wij is an element in matrix W , which is a Z×Z weight
matrix. We let Wii = 0 and we also have

∑
j Wij = 1,∀i.

We define each state-action pair as a node in the graph and
define the weight between every two nodes in the graph, thus
completing the construction of the reward propagation graph
G with weight matrix W .

b) Graph training: In different tasks, the number of
factors influencing reward is different, and the degree of
influence of different factors on reward is also different.
Therefore, we need to tune the weight of graph edges so
that optimizing the function fΘ to make the multi-factors
efficiently integrate to rewards. Intuitively, for the state-action
pair (si, ai), a larger edge weight Wij means that state-action
pair (sj , aj) will transfer more information to the reward for
state-action pair (si, ai). Specifically, we use the relationship
between labelled data to train fΘ to make it suitable for the
current task. We design a predicted reward ξl:

ξl =
∑
k ̸=l

Wlkrk, l, k ∈ [1, ..., v], (3)

where rk is a label (reward) for a state-action pair (node). We
use other labelled state-action pairs to predict the label of the
current state-action pair (have a ground truth label) and then

minimize the difference between the predicted label and the
ground truth label.

Then, the goal of training the graph G is to optimize
the parameters Θ for the function fΘ, that is, minimize the
difference between the predicted labels and their corresponding
ground truth labels, the objective function H(G) is given as:

argmin
Θ

{
H(G) =

1

2ZL

ZL∑
l=1

||ξl − rl||2
}
. (4)

There does not exist a closed-form solution, and we use the
gradient descent method to seek the solution, details are in the
appendix A.

It should be noted that: the unlabelled data are not included
in Equation (4), since the number of the unlabelled data is
often much larger than that of the labelled data, the term on
the unlabelled data may dominate the objective function, which
in turn may degrade the algorithmic performance.

C. Transductive Reward Inference

In Section IV-B, we constructed the graph and trained the
weights of the graph edges. In this section, we propagate
reward-related information on the graph to infer the rewards
for unlabelled state-action pairs based on the rewards of other
state-action pairs.

We separate the weights associated with nodes without
rewards from the weight matrix W of graph G formed by
Equation (2), and represent them as two submatrices WUL

and WUU . WUL represents the weights between nodes with
rewards and nodes without rewards, and WUU represents the
weights between nodes without rewards. We split the reward
set R into two sub-blocks, RL denotes the subset of known
rewards and RU denotes the subset of unknown rewards.

The inference of rewards for unlabelled nodes requires
considering the information transfer between labelled and
unlabelled nodes, we use WULRL for this calculation, while
also taking into account the relationships between unlabeled
nodes themselves, computed using WUURU . Since unknown
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(a) Hammer (b) Button Press (c) Sweep Into (d) Open Drawer

Fig. 3. Meta-World is a set of robotic manipulation tasks.
rewards RU are a variable to be learned, we provide an iterative
computation formula by:

RU ←−WUURU +WULRL. (5)

After t-th iterations, we obtain the following formula:

Rt
U ←−W t

UUR
0
U + (W t−1

UU + ...+WUU + 1)WULRL. (6)

The detailed derivation process is in Appendix B. Based on
the weights calculated by Equation (2), the values in WUU

are all less than 1. Therefore, as t approaches infinity, W t
UU

tends to infinitesimal values, leading W t
UUR

0 converges to 0.
Meanwhile, (W t−1

UU + ...+WUU +1) forms a geometric series,
and after applying the formula for the sum of a geometric
series, we obtain the solution:

RU = (I −WUU )
(−1)WULRL, (7)

which is a fixed point, and I is the identity matrix [14],
[16]. TRAIN converges to a fixed point means that the reward
inference error is within a certain range.

D. Policy Learning

We remark that TRAIN can be combined with any offline
RL algorithm by learning rewards for state-action pairs without
reward. For learning a policy, we use a pre-recorded dataset D.
Dataset D contains some state-action pairs with reward DL,
and most of the rest are state-action pairs without reward DU .
We use TRAIN to predict rewards for DU as D̃U , and then
replace the part of DU with the predicted rewards D̃U to form
D̃. We can then use D̃ to train the policy. In this study, we
employ Critic-Regularized Regression (CRR) [29], a simple
and efficient offline reinforcement learning algorithm, to train
offline reinforcement learning policies on the dataset with the
predicted rewards.

V. EXPERIMENTS

In this section, we present and analyze our experimental
results. Initially, in Section V-A, we detail the experimental
setup, including descriptions of the environment and tasks,
datasets, and baselines. Subsequently, in Section V-B, we
display the experimental results and provide an analysis.
Following this, in Section V-C, we present the findings from
our ablation study. In Section V-D, we discuss the accuracy
of inferred rewards across different proportions of labeled
state-action pairs. Lastly, in Section V-E, we demonstrate the
accuracy of inferred rewards under various norms.

(a) Cheetah (b) Walker (c) Fish (d) Humanoid (e) Cartpole

Fig. 4. DeepMind Control Suite is a set of popular continuous control
environments with tasks of varying difficulty, including locomotion and simple
object manipulation.

A. Experiments setup

a) Environment and tasks: We conduct the experiments
with a variety of complex robotic manipulation and locomotion
tasks from Meta-World [22] and DeepMind Control Suite
[21], [54], respectively. Many factors influence the reward
function of these two series of tasks. Meta-World consists of
a variety of manipulation tasks designed for learning diverse
manipulation skills. The second environment is the DeepMind
Control Suite, which contains many continuous control tasks
involving locomotion and simple manipulation. To investigate
the performance of TRAIN with a small amount of annotated
state-action pairs. We conduct experiments on more than 40
tasks in the Meta-World environment, and we select four tasks
(Hammer, Button Press, Sweep Into, Open Drawer) (see Fig.
3) of them to show their learning curves. We also choose five
complex environments from DeepMind Control Suite: Cheetah
Run, Walker Walk, Fish Swim, Humanoid Run, and Cartpole
Swingup (see Fig. 4) to evaluate the performance of TRAIN in
another environment different from the Meta-World, to verify
whether the algorithm works only in one environment. On each
task, we leverage different algorithms to predict the rewards
for the same dataset and employ the CRR algorithm (except
Behavior cloning) to perform policy learning on the dataset
after predicting the rewards. The learned policies are used to
evaluate the performance of TRAIN and other baselines. We
report the results on all tasks of 5 random seeds, and results
are shown in Section V-B.

b) Datasets: To rigorously evaluate the efficacy of our
method in learning rewards for diverse data and to showcase
the performance of the offline RL algorithm across various
seeds and diverse data, we organize datasets across two distinct
domains. The total number of state-action pairs for each task
is outlined in Table III.

Meta-World domain has been used to evaluate online RL
agents, we create an ad hoc dataset suitable for offline learning.
To do so, we train Soft Actor-Critic [55] from full states on
each of the tasks, and record the entire training data, which
forms the dataset D for each Meta-World task. We define each
training session, from initialization to task resolution, as an
independent run. Multiple independent runs are executed to
ensure a rich diversity of data until a sufficient number of
state-action pairs are collected.

For the DeepMind Control Suite, while the RL Un-
plugged [56] data provided are typically reduced through sub-
sampling, we needed a larger volume and greater diversity.
Hence, we adopted the RL Unplugged methodology, employing
D4PG [57] as implemented in [58], to amass substantial state-
action pairs for each task. Each collection session, from start to
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task completion, is treated as an independent run. This process
continues until the desired quantity of state-action pairs is
amassed for each task.

From each task dataset, we random extract a small subset of
state-action pairs and leverage them as labelled data DL, while
rewards are stripped from the remainder to create unlabeled
data DU . The labels in DL constitute the ground truth rewards.
Table III also displays the ratio of state-action pairs that include
ground truth rewards for each task.

c) Baselines: Behavior cloning (BC) is a popular algo-
rithm in the field of imitation learning and also an alternative
way to learn a policy when the reward values are not available.
BC agent does not require reward values as it attempts to
directly imitate the demonstrated state-action pairs.

Time-guided reward (UDS) workflow, as outlined in [12],
involves several key steps. Initially, it infers a reward function
based on limited supervision, utilizing timestep-level annota-
tions expressed as reward values on a subset of trajectories.
Subsequently, it retroactively annotates all trajectories using
the obtained reward function. Finally, the trajectories, now
equipped with predicted rewards, are employed for offline
reinforcement learning. Additionally, we integrated TGR with
CRR (Critic Regularized Regression) [29] to learn policies
as a baseline for our efforts. Specifically, TGR employs a
two-step process for reward function inference. It starts by
annotating demonstrated trajectories, assigning a flat zero
synthetic reward to the unlabelled subset. The reward function is
then trained using a loss function that jointly optimizes timestep-
level annotations and synthetic flat labels. This comprehensive
approach contributes to the effectiveness of TGR in the context
of offline reinforcement learning. We also combined TGR with
CRR [29] to learn policies.

Unlabeled data sharing (UDS) [13] addresses this scenario
by treating the unlabeled dataset as if it has zero rewards,
followed by the incorporation of reweighting techniques. This
reweighting process is designed to adjust the distribution of
interspersed zero-reward data. The primary objective is to
synchronize the distribution of this external data with that of
reward-containing data pertinent to the original task, thereby
alleviating the bias introduced by inaccurate reward data.
In particular, UDS initially assigns the minimum feasible
reward (typically assumed to be 0) to all transitions within
the unlabeled data. Subsequently, these unlabeled transitions
undergo reweighting, altering the distribution of unlabeled
data to mitigate reward bias. This strategy contributes to
the overall goal of enhancing the alignment between labeled
and unlabeled data distributions in UDS. Finally, train offline
reinforcement learning policies using the reweighted reward
distribution dataset.

B. Experiments results

a) Meta-world: We show the evaluation results on more
than 40 tasks in the Meta-World environment in Table I. Apart
from the five tasks (button-press, drawer-close, handle-press,
reach, reach-wall), the performance of the algorithm TRAIN
exhibits greater superiority compared to others. This indicates
that TRAIN achieves more accurate reward learning on these

tasks. Additionally, due to its inherent smoothness, the learned
rewards in TRAIN are smoother, leading to more stable policy
performance. UDS emphasizes the need for high-quality labeled
data. Since the data in our environment consists of SAC training
data, and the labeled data is randomly selected, UDS performs
well in relatively easy-to-learn tasks, specifically those with
a higher proportion of high-quality data in the dataset, with
particularly outstanding performance in the tasks of button-
press, drawer-close, and handle-press. But, its performance is
subpar in many other tasks.

Regarding the two tasks where the TGR algorithm outper-
forms others, we conducted a detailed analysis to identify the
reasons. These tasks involve relatively simple action trajectories
that are easily explored. The TGR algorithm annotates the
demonstrated trajectories and assigns a flat zero synthetic
reward to the unlabelled subset, which amplifies the rewards
annotated as one along the action trajectories, encouraging the
policy to learn these trajectories more actively. Therefore, TGR
achieves better performance on such tasks. However, in other
relatively complex tasks where the action trajectories for task
completion are diverse, the method fails to provide accurate
rewards for some procedural actions, resulting in mediocre
policy performance. On the other hand, the poor performance
of the Behavioral Cloning (BC) algorithm in many tasks can be
attributed to its reliance on training with the entire dataset. The
dataset comprises both successful and unsuccessful episodes,
causing BC to be significantly affected by data quality. In tasks
with relatively simple actions, algorithms that collect data
can quickly learn the action trajectories for task completion,
leading to a higher proportion of high-quality data in the dataset
and thus better performance of BC. Conversely, in relatively
complex tasks, data collection algorithms require a longer
exploration process to learn the action trajectories for task
completion, resulting in a lower proportion of high-quality data
and consequently poor performance of BC.

We select four tasks of the Meta-World (Hammer, Button
Press, Sweep Into, Open Drawer) to show their learning
curves as measured on the success rate, as shown in Fig. 5.
TRAIN outperforms the baselines on all four tasks, showing
that TRAIN is well suited to make effective use of the
unlabelled, mixed quality, state-action pairs. In the two tasks
of Hammer and Sweep Into, TRAIN has always shown a
greater performance advantage compared to other baselines.
In the two tasks of Button Press and Open Drawer, in the
early stage of training, the performance of the three algorithms
is equivalent, and the follow-up TRAIN gradually stands out.
Especially in the Open Drawer task, a greater performance
advantage has been achieved, while in the Button Press task,
the training process of other baselines fluctuates greatly, and
TRAIN has less fluctuation and achieves better performance.
The conclusions drawn from the results in Fig. 5 are consistent
with the conclusions drawn from the results in Table I. Italic
numbers indicate the highest average return for each task, bold
numbers indicate the statistically significant highest average
return for each task, in which the average return is the highest,
and there is not a clear overlap in the standard deviation
among the baselines. TRAIN has an excellent performance
from the aspect of the success rate demonstrating that TRAIN
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TABLE I
EVALUATION RETURNS ON MORE THAN 40 META-WORLD TASKS. THE AVERAGE ± STANDARD DEVIATION IS SHOWN FOR FIVE RANDOM SEEDS.

Tasks BC TGR UDS TRAIN

basketball 3019± 439.6 978± 122.7 3661± 406.9 4165 ± 315.9
box-close 1081± 106.4 1568± 119.8 1371± 134.5 3897± 412.3
button-press 1911± 356 3301± 291 3508 ± 213.4 3435± 106.4
button-press-topdown 3190± 310.7 3401± 415.7 3496± 229.2 3587 ± 75.4
button-press-topdown-wall 1892± 50.2 2085± 61.6 2069± 48.7 2115 ± 70.4
coffee-button 3531± 710.6 3631± 610.8 3923± 352.4 4128 ± 210.9
coffee-pull 517± 16.3 372± 11.5 314.2± 7.9 637± 35.2
dial-turn 1871± 262.7 4217± 395.4 4236± 162.1 4428 ± 185.9
disassemble 215± 10.9 217± 18.1 239.7± 21.5 889± 10.5
door-close 3862± 167.1 4328± 212.0 4451± 184.2 4512 ± 217.3
door-lock 3156± 306.9 3536± 285.1 3312± 182.8 3753 ± 195.2
door-open 1082± 46.7 3985± 306.9 1949± 66.1 4451 ± 197.1
door-unlock 1947± 216.1 4011± 75.3 2052± 101.6 4189 ± 118.9
drawer-close 4697± 64.3 4839± 102.1 4881 ± 79.8 4797± 20.3
drawer-open 1769± 247 2890± 86 1895± 40.1 4466± 41.3
faucet-close 4143± 170.6 4687± 821.6 4338± 102.1 4712 ± 147.1
faucet-open 3660± 316.4 4702± 1503.5 4671± 361.8 4715 ± 361.3
hammer 2205± 268 3898± 163 2692± 101.5 4532± 95.1
hand-insert 56± 16.1 443± 8.4 409± 10.8 4016± 598.6
handle-press 4598± 137.9 4522± 136.4 4651 ± 82.4 4618± 102.8
handle-press-side 4241± 1353.4 4764± 243.7 4734± 185.2 4785 ± 458.1
handle-pull 3892± 986.8 4348± 894.1 4138± 147.6 4592 ± 125.7
handle-pull-side 3678± 1006.2 4095± 572.6 3958± 114.9 4551± 92.8
lever-pull 3864± 190.8 4184± 175.1 4008± 81.7 4307± 135.7
pick-out-of-hole 11± 0.4 209± 3.5 117± 12.2 1035± 234.9
pick-place 1879± 411.6 2975± 495.6 3228± 283.2 4106± 589.4
plate-slide 3984± 101.7 3674± 748.3 4064± 151.8 4459 ± 171.4
plate-slide-back 3017± 331.6 3158± 958.4 3089± 163.1 4658± 165.3
plate-slide-back-side 4087± 887.5 4678± 172.6 4703± 136.8 4734 ± 198.4
plate-slide-side 2698± 538.8 3002± 365.3 2928± 289.1 3010 ± 429.5
push 1983± 381.9 2097± 261.4 2248± 175.2 4268± 210.7
push-back 9± 0.4 137± 1.5 79± 8.7 201.3± 21.7
push-wall 3642± 597.8 4347± 187.4 4182± 155.8 4501 ± 204.6
reach 3209± 397.2 4761 ± 476.6 4581± 181.2 4668± 215.6
reach-wall 4626± 91.8 4816 ± 51.1 4672± 30.4 4810± 36.3
stick-pull 592± 10.8 442± 7.2 408± 7.8 4128± 121.5
stick-push 362± 16.2 887± 5.3 1065± 21.7 2745± 514.3
sweep 879± 145.6 3214± 412.7 3708± 237.1 4106 ± 312.7
sweep-into 962± 137 1838± 149 2115± 176.5 2257 ± 323.9
window-close 3846± 98.3 4104± 106.1 4354± 86.4 4458 ± 88.4
window-open 3217± 193.2 2897± 954.5 3141± 105.5 3829± 208.4

can effectively label rewards for state-action pairs without
rewards, and the smoothness of the algorithm can make the
labelled data also have smooth characteristics. The policies
trained using these data have more stable performance.

b) DeepMind Control Suite: We show the learning curves
of the five DeepMind Control Suite tasks (Cheetah Run, Walker
Walk, Fish Swim, Humanoid, Cartpole Swingup) in Fig. 6. Our
method TRAIN achieves better performance than baselines in
five tasks. It has achieved a great performance advantage in
the Walker Walk task, and also performed well in the Fish
Swim task. The Cheetah Run and Cartpole Swingup tasks, also
showed a certain performance advantage compared to TGR,
although the advantage is not very large, it can still reflect the
ability of the TRAIN algorithm. In the Humanoid task, TRAIN,
UDS, and TGR are evenly matched during the training process,
but the final performance of TRAIN is still better than other
baselines, reflecting the stability of the state-action pairs with
rewards provided by the TRAIN algorithm.

The action spaces of these five tasks are continuous, and
the rewards are also continuous. It is difficult to give a
clear boundary to distinguish good actions and bad actions.

Therefore, the performance of TRAIN and baselines are both
very steady. TRAIN has smooth characteristics, which can
make the labelled data also have smooth characteristics. Using
these state-action pairs with smooth rewards makes the process
of policy learning in offline RL more stable. Since the TGR
algorithm annotates the demonstrated trajectories and assigns
a flat zero synthetic reward to the unlabelled subset, it shows
a large shock in the process of learning some tasks. UDS
emphasizes the need for high-quality labeled data, resulting in
slightly poorer performance. BC performed the poorest across
the five tasks, particularly struggling with the Fish Swim and
Cheetah Run tasks. Since BC trains using the entire dataset, it
fails to differentiate between data qualities, preventing it from
achieving a high-performing policy.

C. Ablation study

We conducted a comprehensive set of ablation studies aimed
at thoroughly evaluating the effectiveness of our reward shaping
function, denoted as fΘ. These experiments were meticulously
designed and carried out across a diverse set of environments,
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Fig. 5. Learning curves on the four Meta-World tasks as measured on the success rate. The solid line and shaded regions represent the mean and standard
deviation, respectively, across five seeds.
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Fig. 6. Learning curves on the five DM Control tasks as measured on the episode return. The solid line and shaded regions represent the mean and standard
deviation, respectively, across five seeds.

including four Meta-World environments and five DeepMind
Control Suite environments.

In our investigation, we delved into the intricate interplay of
various factors that influence the rewards associated with nine
distinct tasks. To provide a detailed assessment, we employed
four distinct composition methods, each shedding light on the
role of factors related to both states and actions:
(1) Method 1: Both states and actions underwent decompo-

sition into multiple factors, allowing us to scrutinize the
combined impact of these nuanced elements.

(2) Method 2: We selectively decomposed states into multiple
factors while treating actions as a unified entity. This
method offered insights into how states, in isolation,
contribute to the shaping of rewards.

(3) Method 3: We kept states as a single, undivided factor
but decomposed actions into multiple components. This
experiment assessed the significance of dissecting actions
in the reward-shaping process.

(4) Method 4: We simplified the scenario by considering both
states and actions as single, undifferentiated factors. This
method served as a baseline for evaluating the performance
of more complex factorization approaches.

The results are shown in Table II. Italic numbers indicate
the highest average return for each task. Bold numbers indicate
the statistically significant highest average return for each task,
in which the average return is the highest, and there is not a
clear overlap in the standard deviation among the baselines.

The compelling results that emerged from our extensive
experimentation affirmed the superiority of Method 1, where
both states and actions were decomposed into multiple factors.
This approach consistently demonstrated the most favorable
outcomes across the range of tasks we examined. On the other

TABLE II
EVALUATION RETURNS ON FOUR DIFFERENT COMPOSITION METHODS FOR
THE MULTIPLE FACTORS THAT INFLUENCE THE REWARDS. THE AVERAGE ±

STANDARD DEVIATION IS SHOWN FOR FIVE RANDOM SEEDS.

Tasks Method 1 Method 2 Method 3 Method 4

Hammer 4532± 95 3158± 242 2185± 262 1034± 147
Sweep Into 2257 ± 324 1971± 243 1734± 276 665± 185
Button Press 3435 ± 106 3145± 227 2576± 85 1089± 290
Open Drawer 4466± 41 2998± 64 2514± 54 1727± 75

Cheetah Run 430 ± 55 361± 138 255± 126 183± 74
Walker Walk 950 ± 155 714± 83 463± 76 262± 38
Fish Swim 576 ± 155 453± 26 296± 89 198± 29
Humanoid Run 359± 57 201± 31 154± 38 26± 4
Cartpole Swingup 642± 68 441± 29 349± 18 208± 17

hand, Method 2, which decomposed states while treating actions
as single entities, produced results that, while respectable, fell
short of the peak performance achieved by Method 1.

A noteworthy revelation emerged when we explored Method
4, where both states and actions were considered as single
factors. This approach exhibited a stark drop in performance,
and in some slightly complex environments, it led to outright
failures. This finding underscores the critical importance of
factorization and highlights the perils of oversimplifying the
reward-shaping process.

In light of these insights, we conclude that decomposing
both states and actions into multiple factors and seamlessly
integrating them using fΘ stands as the most effective strategy.
This sophisticated approach enables a finer level of granularity
in reward learning and significantly enhances the overall
efficacy of policies trained on datasets subjected to such
comprehensive factorization.

Image-based experiments TRAIN showcases a remarkable
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degree of adaptability that extends beyond conventional full-
state tasks, seamlessly accommodating image-based tasks with
equal prowess. In our quest to assess TRAIN’s performance
in the realm of image-based tasks, we ingeniously conditioned
the environment’s output to generate images, thus opening up
exciting possibilities for visual-based learning scenarios.

Furthermore, we integrated a widely endorsed strategy
employed in diverse task domains, wherein we treated multiple
frames as a single time-step state. These frames underwent
a meticulous process of decomposition into interdependent
frames, and each frame was subsequently subjected to further
dissection into RGB channels, effectively treating each single
image as an individual factor. The experimentation with
TRAIN spanned a diverse set of environments, encompassing
four distinct Meta-World environments and an additional five
environments sourced from the esteemed DeepMind Control
Suite. The breadth of this evaluation allowed us to gain
comprehensive insights into TRAIN’s capabilities in a variety
of settings. The results are shown in Fig. 7.

The experimental results that emerged from these rigorous
trials underscored TRAIN’s robust performance in image-based
experiments. This underscores the effectiveness of our approach
in seamlessly integrating multiple images within a single time
step, each image serving as a distinct factor. This multi-faceted
approach capitalizes on the richness of information inherent in
each image, ultimately enhancing the depth and quality of the
learning process.

D. Accurate of inferred rewards

To rigorously assess the predictive accuracy of our approach,
TRAIN, across varying ratios of labeled data, we embarked on a
comprehensive evaluation campaign. Our experiments spanned
a diverse range of environments, encompassing four challenging
Meta-World scenarios and an additional five environments
sourced from the prestigious DeepMind Control Suite.

In Fig. 8, we present a vivid representation of our findings,
utilizing the mean squared error (MSE) as our primary evalua-
tion metric. This heatmap graphically depicts the relationship
between multiple tasks (on the horizontal axis) and the ratio
of reward-labeled data in the dataset (on the vertical axis).
Each value in the figure reflects the MSE associated with a
specific task under the corresponding labeled data ratio. To
ensure the robustness of our findings, we partitioned the dataset
into multiple batches, with the calculated result representing
the average MSE value across these batches.

The compelling insights derived from our experiments reveal
a clear trend: as the ratio of reward-labeled data in the dataset
increases, the corresponding MSE values decrease, indicating
a higher degree of predictive accuracy. Conversely, a lower
ratio of labeled reward data in the dataset is associated with
higher MSE values, signifying a relatively lower predictive
accuracy. Furthermore, our observations indicate that tasks
characterized by higher-dimensional states and actions tend
to exhibit elevated MSE values, suggesting that predictive
challenges are more pronounced in these complex settings.

These findings offer valuable insights into the performance
of TRAIN across a spectrum of labeled data ratios and task

complexities, shedding light on its capabilities and areas for
potential refinement. Such detailed evaluations are instrumental
in understanding the nuances of our approach’s predictive
accuracy and provide a roadmap for its application in real-
world scenarios across various domains.

E. Accurate of inferred rewards on different norms

To assess the accuracy of our proposed method, TRAIN,
in relation to different norms, we conducted experiments
using four Meta-World and five DeepMind Control Suite
environments. Fig. 8 illustrates the results, utilizing the mean
squared error (MSE) as the evaluation metric.

It’s important to note that the 1.5 norm and the 2.5 norm
are introduced purely for experimentation purposes and lack
specific physical interpretations. These two norms are included
to investigate the impact of norm selection on our method.

In the heatmap of the experimental outcomes, the horizontal
axis represents various tasks, the vertical axis corresponds
to different norms, and the values within the figure indicate
the MSE for each task under a specific norm. The dataset
was partitioned into multiple batches, and the calculated result
represents the average MSE across these batches.

From the experimental results, it is evident that different
norms have minimal influence on the MSE, indicating that
our method TRAIN is not sensitive to the choice of norm,
underscoring its robustness in various scenarios. Further
experimental analysis can be found in Appendix D.

VI. DISCUSSION

This paper adopts a transductive inference manner to learn
the reward function for offline RL. The proposed TRAIN
algorithm infers rewards for unlabeled state-action pairs and the
experiments demonstrate the effectiveness of inferred rewards
in agent training. From the above positive insight and effective
performance, we would like to explore the potential mystery
of this manner and clarify some interesting observations.

A. Reward inference mystery

Inductive inference builds models by identifying hidden
patterns in state-action pairs that have rewards, aiming to
generalize these findings to unseen pairs without rewards [59],
[60]. Conversely, transductive learning exposes the model to
both rewarded and unrewarded state-action pairs during the
training phase [61], [62]. Our approach focuses on discerning
patterns across all pairs and uses this knowledge to predict
rewards for those without labels. Each task is distinguished by
a unique array of state features, necessitating predictions for
many unlabeled state-action pairs based on a smaller subset that
contains rewards. Unlike inductive inference, which requires
a large number of rewarded pairs to develop a generalizable
model, transductive inference is more suitable for our purposes.

To augment the proposed method of transductive inference
to enable it to support inductive reward inference, we consider
integrating more advanced feature extraction techniques that
identify fundamental patterns common across various tasks.
Additionally, we aim to shift our focus from merely propa-
gating reward information from labeled pairs to inferring the
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Fig. 7. Evaluation returns on the nine image-based tasks. The vertical lines depict the standard deviation across five random seeds of each experiment.
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Fig. 8. The accuracy between predicted labels and ground truth labels of
TRAIN under different labelled data ratios on four Meta-World and five
DeepMind Control Suite environments, respectively. The evaluation metric is
the mean squared error (MSE).

underlying reward function from a wider range of state-action
characteristics. This enhancement will help the model learn
features that are broadly applicable, and enhance the model’s
applicability across different scenarios.

B. Significant deviation instability

From the experimental results, our method demonstrated
stable performance across most tasks. We also observed some
instances of instability. In the Meta-World domain, seven tasks
exhibited significant variance due to their complexity and
the random initialization of crucial elements, which led to
substantial diversity in states. For instance, the task "pick-out-
of-hole" involves picking up a puck from a hole with puck
and goal positions randomized at each initialization. Similarly,
the "box-close" task requires grasping a cover and closing the
box, with the positions of the cover and box also randomized
each time. In the DM Control domain, two tasks displayed
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considerable variance due to their complex reward structures
and the multitude of factors influencing rewards. For example,
in "fish swim," there are two distinct tasks: the upright task,
where the fish is rewarded solely for righting itself vertically,
and the swim task, where it is also rewarded for swimming
towards a target. This setup results in a diverse array of reward-
earning states.

The high diversity of collected states and the numerous
state elements linked to rewards present challenges for reward
learning. When integrating various factors that influence
rewards into the graph, some oscillations occur. Moreover,
because our scenarios feature a low proportion of reward-
bearing states, problems such as insufficient or excessive
smoothing and oscillations in the reward inference process may
arise. This can lead to considerable performance variability
when training agents using the annotated dataset. To address
this issue, we could consider implementing feature extraction
and integration techniques that capture the specific underlying
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patterns or rules of the states for each task.

VII. CONCLUSION

In conclusion, our research proposes the TRAIN method to
address a critical challenge in offline reinforcement learning
by developing a reward inference method that leverages a
constrained number of human reward annotations to estimate
rewards for unlabelled data. TRAIN models MDPs as a
graph and leverage the contextual properties of information
propagation of the graph structure to construct a reward
propagation graph that incorporates various influential factors,
facilitating transductive reward inference. We have shown
the existence of a fixed point during the iterative inference
process, and our method converges at least to a local optimum.
Empirical evaluations on locomotion and robotic manipulation
tasks demonstrate the effectiveness of TRAIN, especially
when dealing with limited reward annotations. This work has
significant implications for practical scenarios where reward
functions are challenging to access.
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