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ABSTRACT
We study the problem of incorporating prior knowledge into a deep
Transformer-based model, i.e., Bidirectional Encoder Representa-
tions from Transformers (BERT), to enhance its performance on
semantic textual matching tasks. By probing and analyzing what
BERT has already known when solving this task, we obtain better
understanding of what task-specific knowledge BERT needs the
most and where it is most needed. The analysis further motivates
us to take a different approach than most existing works. Instead of
using prior knowledge to create a new training task for fine-tuning
BERT, we directly inject knowledge into BERT’s multi-head atten-
tion mechanism. This leads us to a simple yet effective approach
that enjoys fast training stage as it saves the model from training
on additional data or tasks other than the main task. Extensive
experiments demonstrate that the proposed knowledge-enhanced
BERT is able to consistently improve semantic textual matching
performance over the original BERT model, and the performance
benefit is most salient when training data is scarce.
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1 INTRODUCTION
Measuring semantic similarity between two pieces of text is a fun-
damental and important task in natural language understanding.
Early works on this task often leverage knowledge resources such
as WordNet [28] and UMLS [2] as these resources contain well-
defined types and relations between words and concepts. Recent
works have shown that deep learning models are more effective
on this task by learning linguistic knowledge from large-scale text
data and representing text (words and sentences) as continuous
trainable embedding vectors [10, 17].

Among these works, deep Transformer-based models such as the
Bidirectional Encoder Representations from Transformers (BERT)
has shown very promising performance, thanks to the contextual-
ized word representations learned through its multi-head attention
mechanism and unsupervised pre-training on large corpus [39]. To
further instill knowledge into BERT, recent works have proposed
different training tasks beyond the original masked language mod-
eling and next-sentence prediction tasks [10]. These include other
unsupervised pre-training tasks such as span prediction [21] and
domain-specific pre-training [14], as well as knowledge-based tasks
such as semantic role prediction [48], entity recognition [47], and
relation prediction [26]. Among these approaches, some are able
to improve the semantic textual similarity (STS) task performance
[21], while others are sometimes detrimental to the task [47, 48].

In this paper, we explore a different approach to incorporating
external knowledge into deep Transformers for STS tasks. Instead
of creating additional training tasks, we directly inject knowledge
into a Transformer’s multi-head attention. On the one hand, deep
Transformers are usually seen as complex “black boxes” that can
only be improved through well-formulated training (or fine-tuning)
tasks. On the other hand, the research community has recently
seen a surge of interest in “opening the black box” to understand
the internal mechanism of Transformer-based models. These in-
clude analyses of layer-wise attentions, syntactic knowledge, se-
mantic knowledge, and world knowledge learned at each layer
[8, 12, 16, 37]. We refer the reader to Rogers et al. [33] for a com-
prehensive synthesis. Motivated by these recent studies, we aim to
take one step further – in addition to observing the mechanisms
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inside BERT, we explore the possibility of purposefully steering its
internal mechanism and study the effects of such intervention. In
particular, we use prior knowledge to guide the attention of BERT
towards a better performance on STS tasks. Although previous
work has proposed to use prior knowledge in guiding the attention
of other deep learning models, such as recurrent neural networks
[7] and long short-term memory networks [4], to the best of our
knowledge, we are the first to explore direct intervention of BERT’s
attention mechanism.

To make informed decisions on what kind of knowledge to add
and where to add it in BERT, we conducted in-depth analyses of
the BERT model on the STS task. The results inform us to inject
word similarity knowledge into BERT’s attention at the first layer.
Extensive experiments on standard STS datasets demonstrate that
our approach consistently improves BERT on STS tasks, and the
improvement effect is most salient when training data size is very
limited. The main contributions of this paper are as follows:

• We show that while a pre-trained BERT model has prior
knowledge on STS tasks which a non-Transformer deep
model does not possess, its knowledge in word similarity is
still inadequate and can be further improved.

• We propose an efficient and effective method for injecting
word similarity knowledge into BERT – not through adding
another training task, but by directly guiding the model’s
attention. This approach not only performs at least as well
as adding a new training task, but also saves substantial
training time.

• We show that the proposed method is able to consistently
improve the STS performance of BERT and the benefit is
especially salient when training data is scarce.

2 RELATEDWORK
Semantic textual similarity is a well-studied task in natural language
processing (NLP). In most previous works, feature engineering was
the main approach. Early research on this task explored different
types of sparse features and confirmed their value. This includes
(1) syntactical and lexical features extracted from word and sen-
tence pairs [9, 44], (2) knowledge-based features using WordNet,
which make extensive use of word similarity information [13], (3)
semantic relation knowledge [19] and logical rules [1] derived from
WordNet, (4) word-alignment features which discover and align
similar semantic units in a pair of sentences [34, 35]. Before the
advent of BERT, other types of deep neural networks have already
been used to solve STS tasks. These include feedforword neural
networks (FNN), convolutional neural network s (CNN) and long
short-term memory-Networks (LSTM). For example, Hu et al. used
a CNN model that combines hierarchical structures with layer-by-
layer composition and pooling [18]. Yin et al. presented a general
attention-based CNN for modeling a pair of sentences [46]. Parikh
et al. used attention to decompose the problem into sub-problems
that can be solved separately in the form of natural language in-
ference (NLI) tasks [29]. Tomar et al. proposed a variant of the
decomposable attention model which achieved good results on
paraphrase identification task [38]. Besides, Chen et al. utilized
tree-LSTM and soft-alignment to improve the performance of the
ESIM model on NLI tasks [5]. Lan et al. showed that the tree-LSTM

model also did well in STS task [23]. Among many variants of
the ESIM [6, 25], KIM leveraged external knowledge to improve
performance of ESIM on semantic similarity tasks [6].

In recent years, the shift from neural network architecture en-
gineering to large-scale pre-training has significantly improved
NLP tasks, demonstrating the power of unsupervised pre-training.
Outstanding examples include Embedding from Language Models
(ELMo) [31], Generative Pre-trained Transformers (GPT) [32], Bidi-
rectional Encoder Representations from Transformers (BERT) [10],
and Generalized Auto-regressive Pre-training (XLNet) [45]. Pro-
viding fine-grained contextual word embedding, these pre-trained
models can be either easily applied to downstream tasks as en-
coders or directly fine-tuned for downstream tasks. As the most
prominent model in recent years, BERT and many of its variants,
including AlBERT [24], RoBERTa [27], SemBERT [48], ERNIE [47],
K-BERT [26], and DeBERTa [15], have achieved superior results
in many NLP tasks. Among them, SemBERT, ENRIE and K-BERT
all add knowledge to the orginal BERT model, but in different
ways. SemBERT and K-BERT are fine-tuning methods without
pre-training and they are capable of loading model parameters
from a pre-trained BERT. SemBERT incorporates explicit contex-
tual semantics from pre-trained semantic role labeling. K-BERT is a
knowledge-enhanced language model, in which knowledge triples
are injected into the sentences as domain knowledge. K-BERT is
only trained on Chinese text corpus. ENRIE is an improvement on
top of BERT that utilizes both large-scale textual corpora and knowl-
edge graph. It takes advantage of lexical, syntactic, and semantic
knowledge information simultaneously. Although the above three
BERT variants are shown to improve performance on a variety of
language understanding tasks, the results largely depend on the
size of task-specific training data. For instance, the performance
of ERNIE was reported to be unstable on semantic similarity tasks
with small datasets [47].

3 WHAT HAS BERT ALREADY KNOWN
ABOUT SEMANTIC TEXTUAL SIMILARITY?

Before adding task-specific knowledge to BERT, the first and fore-
most question is: what has BERT already known (and not known)
about the task? Answering this question will allow us to design our
approach in an informed, targeted manner.

To operationalize our answer to the above question, we use a
classical STS dataset – the Microsoft Research Paraphrase Corpus
(MPRC) [11], as a pilot data set. Each data instance is a pair of
sentences. The goal is to detect if one is a paraphrase of the other
(binary classification). We conduct two pilot studies as follows.

(1) Data Augmentation Study. In this study, we augment the
pilot dataset with various types of prior knowledge that are poten-
tial useful for determining semantic textual similarity, and compare
the performance of BERT trained on the original data vs. the aug-
mented data. The intuition is that if a particular data augmentation
strategy can improve BERT’s STS performance, it indicates that
BERT still lacks the corresponding knowledge. Otherwise it implies
that BERT has already “known” the corresponding knowledge. As
a comparison, we apply the same procedure to a non-Transformer
model for the STS task, the Enhanced Sequential Inference Model
(ESIM) [5], and see if the same data augmentation strategy can
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benefit such a model (which indicates that the model lacks the
corresponding knowledge). We defer detailed descriptions of BERT
and ESIM to Section 4.

(2) Layer-wise Performance Study. In this study, we freeze a
BERT model (except for the softmax classification output head) and
use the pretrained contextualized word representation to perform
the STS task. The goal is to observe where BERT stores the most
STS-related knowledge, and where such knowledge is the most
lacking. This allows us to make an informed decision on which
BERT layer(s) to inject prior knowledge.

Below we discuss the results and implications of the two studies.

3.1 Effect of Data Augmentation
In short, data augmentation techniques use prior knowledge and
relatively simple algorithms to derive new training data from origi-
nal training data [43]. It is an effective way of enriching the original
data with task-specific knowledge. Below we describe several data
augmentation strategies and the corresponding prior knowledge
related to STS.

(1) Split and swap: For each sentence, split it at a random position
and swap the two segments. The assumption is that although a
sentence could be ungrammatical after such an operation, its
essential meaning should be preserved.

(2) Add random word: For each sentence, pick a random word from
the vocabulary that is not in the sentence, and insert it at a
random position in that sentence. The assumption is that such
an out-of-context word acts as a noisy typo and should not
affect the main meaning of the sentence.

(3) Back translation: All sentences in MRPC are in English. Using
Google Translate, we translate the sentence to Chinese and
then back to English. The assumption is that translation should
rewrite the sentence in a different way but preserve meaning.

(4) Add high-TfIdf word: For each sentence, find the word with the
highest TfIdf weight and insert it at a random position in that
sentence. Words with high-TfIdf weights are usually content
words, therefore repeating them should not change the meaning
of the sentence by much.

(5) Delete low-TfIdf word: Findk wordswith the lowest TfIdf weights
in the sentence pair. Then for each of these words, delete it from
the sentence with probability p. We set k = 5,p = 0.5. Words
with low TfIdf weights are usually stop words or functional words
(e.g., “the”, “of”, “and”), and therefore may not be essential to
the meaning of the sentence.

(6) Replace synonyms: For each word in a sentence, see if the word
has synonyms in WordNet. If so, pick the first word in the
synonym list that is not the word itself. The assumption is
that replacing words with their synonyms does not change the
meaning of a sentence. In principle, other resources such as
ConceptNet and UMLS also provide synonym knowledge and
can be used here in place of WordNet.

We use the standard train-test split provided in theMRPC dataset.
Then, we apply each of the above data augmentation strategies on
the training data, each resulting in a 2× increase of training data
size. Figure 1 shows the F1 performance of BERT trained by each

augmented dataset, as well as the performance without data aug-
mentation. To minimize the effect of randomness in BERT training,
performance levels are averaged across 10 different runs.

The results show that except for Replace synonyms, all other
strategies lead to a performance drop. This indicates that BERT may
have already understood the importance of stop words and content
words in STS tasks, and it knows to use syntactic ordering and
semantic coherence when inferring semantic similarity. The fact
that back translation does not help implies that back-translated sen-
tences may contain semantic shifts and/or syntactic errors, which
can mislead BERT.

(0) (1) (2) (3) (4) (5) (6)86.0
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Figure 1: Effect of augmenting the MRPC data set for BERT.
The X-axis represents different data augmentation strate-
gies corresponding to the order in the text, where (0) repre-
sents the original training data without augmentation, and
the serial number (1) to (6) represents Split and swap, Add
random word, Back translation, Add high-TfIdf word, Delete
low-TfIdf word, Replace synonyms, respectively. Error bars
show ±1 standard deviation around the average of 10 runs.
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Figure 2: Effect of augmenting the MRPC data set for ESIM.
X-axis labels are defined similarly as those in Figure 1.

As a comparison, we apply the same augmented data to ESIM.
The results are shown in Figure 2. Note that BERT outperforms
ESIM by a large margin. Here we focus on the relative differences
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Figure 3: Performance of eachBERT layer onMRPCdata set.

made by different augmentation strategies on ESIM. ESIM benefits
from all data augmentation strategies except for Add random word.
Both Back translation and Split and swap are effective strategies (>1%
absolute gain in F1), which do not apply for BERT. This indicates
that a pretrained BERT model has rich prior knowledge for the
STS task that a pre-Transformer model does not possess. Similar to
BERT, Replace synonyms can substantially benefit ESIM as well.

3.2 Different BERT Layers on the STS Task
Figure 3 shows the performance of using each pre-trained BERT
layer on the MRPC paraphrase identification task. In this study, the
original training data was used without any augmentation. Again,
the performance levels are averaged across 10 different runs.

Since the BERT layer parameters are “frozen” (not trainable)
in this task, the performance shows that BERT’s middle layers
are inherently good at this task, while lower and upper layers
are not. This echoes with recent findings on BERT layers. Lower
layers were found to perform broad attention across all pairs of
words [8]. Middle layers were found to mostly capture transferable
syntactic and semantic knowledge [16, 36]. It is not surprising that
the upper layers do not perform well, as these layers are specifically
tuned towards the pre-training tasks of BERT – masked language
modeling and next-sentence prediction – not STS tasks.

To summarize, the data augmentation study shows that BERT
knows about the importance of stop words, content words, and
syntactic structure for the STS task, but its knowledge in word
synonyms can be further improved. The layer-wise performance
study shows that lower layers of BERT needs the most improvement
for STS tasks. Combining results from the two studies, we identify
a promising direction, i.e., to incorporate synonym knowledge into
low layers of BERT (next section). We would like to note that the
above analysis and reasoning procedure can be potentially applied
to identify “knowledge deficiency” of BERT in other NLP tasks
as long as one can associate different kinds of knowledge with
different subsets of training data.

4 PROPOSED ALGORITHM
In this section, we design a general algorithm for incorporating
synonym knowledge into the BERT model. According to the find-
ings in Section 3, this knowledge should be added to lower layers
of BERT. Since each attention layer computes similarity between
all pairs of words, and it has been shown that the attention in the
first layer is broad and uninformed [8, 33], we decide to use word
similarity knowledge to modulate the attention at the first layer. As
a comparison baseline, We add the same knowledge into the ESIM
model. Below we describe our approach in detail.

4.1 Word Similarity Matrix
Given two pieces of text (i.e., sentences) a = (w1, · · · ,wa , · · · ,wla )

and b = (w1, · · · ,wb , · · · ,wlb ), we construct a word similarity
matrix S of size la × lb . The goal of this matrix S is to increase
BERT’s attention on semantically similar word pairs.

We calculate the value of each cell in S based on semantic rela-
tions in WordNet. For a lexical pair (wa ,wb ), if words in the pair
are synonyms in WordNet, the cell value Sab = 1. Otherwise, ifwa
andwb are not synonyms, we set Sab as a value in [0, 1] according
to the method proposed by Wu-Palmer [42], which calculates word
similarity based on their topological distance in WordNet. In cases
where one or both words in a pair cannot be found in WordNet, or
the pair of words do not have a valid Wu-Palmer similarity value
(e.g. if one word is a stop word like “into”), we directly set the pair-
wise similarity value to 0. For proper names of people and places, if
words in the pair are the same, the value will be set to 1, otherwise
it will be 0. Figure 4 visualizes the heat map of the similarity matrix
constructed for two sentence pairs. We compute word similarity
matrices for all sentence pairs in both training and test dataset as a
preprocessing step.

Note that our method is general and compatible with other se-
mantic similarity resources, such as Wikipedia, ConceptNet, and
UMLS (Unified Medical Language System) Metathesaurus. We can
construct S using word/concept similarity knowledge in these re-
sources as well. Also note that simple word lookup does not resolve
word sense ambiguity, andWordNet does not cover many acronyms
and abbreviations. We leave further refinements of word similarity
matrix S for future work.

4.2 Bidirectional Encoder Representations
from Transformers (BERT)

BERT is a pre-trained language model with state-of-the-art per-
formance on many NLP tasks. We fine-tune Google’s pre-trained
BERT-base model in our implementation.

Word similarity knowledge is added into BERT’s multi-head at-
tention (both self-attention and cross-attention). In the embedding
stage, we use the summation of three parts: token embedding, po-
sition embedding, and segment embedding, which is the same as
BERT. In the Transformer stage, our method is similar to BERT.

4.2.1 Multi-Head Attention in BERT. BERT’s attention function
can be described as a mapping from query vector Q and a set of
key-value vector pairs (K ,V ) to an output vector – the attention
strengths. Multi-head attention linearly projects the queries, keys
and values h times (h is the number of “heads”) with different linear
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Figure 4: Heat map for two sentence pairs taken from the
STS-B dataset, where the ground-truth similarity score of
the first sentence pair (“A man is jumping into water” and
“Aman is cutting paper”) is labeled as 0.8, and the similarity
score of the second sentence pair is 5 (“A man is climbing
a rope” and “A man climbs a rope”). The higher score, the
more similar the two sentences.

projections todk ,dk , anddv dimensions, respectively. Next, on each
head of these projections of queries, keys and values, it performs
the attention function in parallel. This produces dv -dimensional
output values. These values are concatenated and projected again
to get the final attention:

MultiHead(Q,K ,V ) = Concat(head1, . . . ,headh )W
O ;

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ) ,

(1)

whereWQ
i ∈ Rdmodel×dk ,W K

i ∈ Rdmodel×dk ,WV
i ∈ Rdmodel×dv

andWO
i ∈ Rhdv×dmodel are parameter matrices representing the

projections. dmodel is BERT’s hidden layer size. The calculation of
BERT’s attention uses scaled dot-product:

scores = QKT +MASK ;

Attention(Q,K ,V ) = so f tmax(
scores√

dk
)V ,

(2)

whereMASK is a matrix used in masked language modeling, the
pretraining task for BERT.

4.2.2 Knowledge-Guided Attention. To add prior knowledge, we
make adjustments to the multi-head attention phase as shown in
Figure 5. We calculate the Hadamard product (i.e., element-wise
product) of the scores using the similarity matrix S to make the
model pay more attention to the word pairs with higher similarities
in two sentences:

scores = QKT ⊙ S +MASK ;

Attention(Q,K ,V ) = so f tmax(
scores√

dk
)V ,

(3)

where S represents the word similarity matrix we calculated in
advance (Section 4.1). As mentioned before, we only add such prior
knowledge in the attention of the first BERT layer, as that layer’s
attention is broad and uninformed [8, 33].

Q Linear

K Linear

V Linear

MatMul Scale
Mask

Similarity 

Matrix

SoftMax

MatMul

Concat Linear

external 

knowledge base

Figure 5: Injecting word similarity knowledge in BERT’s
multi-head attention.

4.3 Enhanced Sequential Inference Model
In this section, we show that our method can also be used to incor-
porate knowledge into the Enhanced Sequential Inference Model
(ESIM). This model explicitly computes pairwise word similarities
as a component [5]. Before BERT was proposed, ESIM was one of
the state-of-the-art methods for sentence pair modeling tasks. In
this paper, we use ESIM as a non-Transformer model for baseline
comparison.

4.3.1 The Original ESIM. ESIM first uses a bi-directional long short-
term memory network (BiLSTM) to encode the input sentences
a and b. For the i-th token of sentence a, the hidden state vector
generated by the BiLSTM is denoted as ai . Similarly we can define
a state vector b j for the j-th token of sentence b:

ai = BiLSTM(a, i) ∀i ∈ [1, . . . , la ] ;

b j = BiLSTM(b, j) ∀j ∈ [1, . . . , lb ] .
(4)

ESIM computes the attention weights ei j as the inner product of
a hidden state pair ⟨ai ,b j ⟩ for all tokens in sequences a and b:

ei j = aTi b j . (5)

The attention weights are then normalized and used as coeffi-
cients to compute a “soft alignment” between a word in one sen-
tence and all words in the other sentence:

βi =

lb∑
j=1

exp(ei j )∑la
k=1 exp(eik )

b j ;

α j =

la∑
i=1

exp(ei j )∑lb
k=1 exp(ek j )

ai ,

(6)

where βi is the “subphrase” in b that is softly aligned to words in a
and vice versa for α j .

After soft-alignment, ESIM uses Tree-LSTMmodel to help collect
local inference information over linguistic phrases and clauses. The
output of the Tree-LSTM model is then max-pooled, averaged, and
concatenated as input to a final multilayer perception. We refer the
reader to [5] for more details.
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Figure 6: Injecting Word Similarity Knowledge in ESIM

4.3.2 Knowledge-Guided ESIM. The overall architecture of the
knowledge-enhanced ESIM is illustrated in Figure 6. To inject word
similarity knowledge, we also compute the Hadamard product be-
tween the attention weight matrix e and the word similarity matrix
S defined in Section 4.1:

pi j = ei j ⊙ Si j . (7)

So that the soft alignment will be updated as follows:

βi =

lb∑
j=1

exp(pi j )∑la
k=1 exp(pik )

b j ;

α j =

la∑
i=1

exp(pi j )∑lb
k=1 exp(pk j )

ai ,

(8)

The remaining steps are similar to the original ESIM.

5 EXPERIMENTS
In this section, we evaluate our proposed method and compare it
with baseline models that do not incorporate prior knowledge.

The benefit of incorporating prior knowledge in machine learn-
ing models is most salient when training data is small. Indeed, when
training data is abundant, those data already contain sufficient task-
specific knowledge, diminishing the benefit of prior knowledge.
Therefore besides the standard setting where different models are
evaluated on 100% training data, we are more interested in evaluat-
ing our approach as we vary the size of training data from small to
large. This motivates us to further conduct learning curve analyes.

5.1 Datasets
We use four popular benchmark datasets in our experiments: two
relatively small semantic textual similarity datasets and two rela-
tively large paraphrase identification datasets.

• MRPC [11] is a corpus of sentence pairs with artificial an-
notations automatically extracted from online news sources

to indicate whether each pair of sentences captures the para-
phrase/semantic equivalence relationship through binary
judgment. It has 4,076 train data and 1,725 test data. In this
paper, we split 10% training data as the validation set accord-
ing to GLUE [40] standardized splits. In Section 3, we used
this dataset as a pilot to understand BERT.

• STS-B [3] is a collection of sentence pairs extracted from
news headlines, video headlines, image headlines, and natu-
ral language inference data. It comprises a selection of the
English datasets used in the STS tasks organized in the con-
text of SemEval between 2012 and 2017 which includes 5,749
train data, 1,500 development data and 1,379 test data.

• QQP [20] is a dataset used to determine whether a question
pair is duplicated. It consists of more than 400,000 rows of
potential question duplicate pairs collected from Quora.com.
In this paper, we use the same data and split by Wang in
article [41], with 10,000 question pairs each for development
and test. Besides, in both development and test set, the num-
ber of both paraphrasing and non-paraphrasing sentence
pairs is 5000. Accuracy is used as the evaluation metric for
this dataset.

• Twitter-URL [22] is collected from tweets that share the
same URL of news articles by Lan. It includes 56,787 sentence
pairs, and each sentence pair is annotated by 6 Amazon
Mechanical Turk workers. Therefore, a total of 6 workers
judged if this pair is a paraphrase or not. If n ≤ 2 workers
were positive, we treat them as non-paraphrasing; if n ≥ 4,
we treat them as paraphrasing; if n = 3, we discard them.
After this treatment, there were 42,220 pairs for training and
9,334 pairs for test.

5.2 Implementation Details
We implement the models with the same PyTorch framework. Be-
low, we summarize the implementation details that are key for
reproducing results for each model. (The source code is available
at https://github.com/xiatingyu/Bert_sim).

• BERT: We compare our proposed model with a BERT model
without prior knowledge. Both models adopt the configura-
tion of Google’s BERTbase [10]. We set the number of both
self-attention layers and heads as 12, and the dimension of
embedding vectors as 768. The total number of trainable
parameters of both the original BERTbase and our proposed
model (called BERTbase-Sim) are the same (110M), therefore
we are performing a head-to-head comparison.

• ESIM: Word embeddings of ESIM model is initialized with
840B-300d Glove word vectors [30]. Embeddings of out-of
vocabulary words are randomly initialized. All parameters,
including word embeddings, are updated during training. In
order to verify the influence of prior knowledge on the model
effect, we use the same parameters mentioned in paper [5],
including optimization method, learning rate, dropout rate.
We call our proposed model ESIM-Sim.

5.3 Performance Across Four STS Datasets
We add prior knowledge to both ESIM model and BERT model and
train them on the above four datasets. Table 1 shows the results
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Table 1: Semantic textual matching performance in four datasets (%), based on our re-implementation of each method in
PyTorch. Each performance value of ESIM and ESIM-Sim (BERTbase and BERTbase-Sim) are the average of 10 (5) runs with dif-
ferent random seeds, respectively. Values in the parentheses are standard deviations (SD). PC: Pearson correlation coefficient.
SC: Spearman’s rank correlation coefficient. The best average performance in each column is in bold.

MRPC STS-B QQP TwitterURL
F1 (SD) Macro-F1 (SD) PC (SD) SC (SD) F1 (SD) Accuracy (SD) F1 (SD) Macro-F1 (SD)

ESIM 78.5 (2.0) 56.5 (6.2) 47.2 (0.7) 44.0 (0.8) 87.6 (0.5) 87.5 (0.5) 59.1 (2.3) 71.3 (2.1)
ESIM-Sim 79.1 (1.5) 60.3 (5.8) 59.3 (1.3) 56.4 (1.4) 87.5 (0.5) 87.6 (0.5) 65.3 (1.7) 78.2 (1.3)
BERTbase 87.0 (1.5) 80.7 (1.7) 84.4 (0.7) 82.9 (0.7) 90.7 (0.4) 90.8 (0.4) 76.0 (0.7) 84.8 (0.5)
BERTbase-Sim 88.3 (0.3) 81.2 (1.1) 85.1 (1.2) 83.8 (1.1) 90.5 (0.4) 90.7 (0.4) 76.2 (0.7) 85.0 (0.6)
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Figure 7: Performance of BERT and BERT-Sim with different amounts of training data. X-axis: Percent of supervised training
data. Y-axis: Macro-F1 for MRPC and Twitter-URL, Accuracy for QQP and Pearson Correlation for STS-B . The colored bands
indicate ±1 standard deviation corresponding to different percentages of training data.
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Figure 8: Performance of ESIM and ESIM-Sim with different amounts of training data. X-axis: Percent of supervised training
data. Y-axis: Macro-F1 for MRPC and Twitter-URL, Accuracy for QQP and Pearson Correlation for STS-B. The colored bands
indicate ±1 standard deviation corresponding to different percentages of training data.

with our implementation. We use accuracy, F1 score of the positive
class, macro-F1 score, Pearson correlation, Spearman correlation
for evaluation on different datasets. These metrics follow previous
literature [10, 40, 41]. Compared with the BERT model, ESIM model
has a faster training speed and takes up less memory, so in Table
1 the results of ESIM model and ESIM-Sim model are the average
after training 10 times. For BERT model, due to its slow training
speed and large memory usage, the results are the average over 5
runs. In addition, our results have slight deviation from the results
reported in the Google BERT paper [10]. We suspect the following
potential reasons: (i) The training set and the validation set are
split in different ways, for example QQP dataset. (ii) The random
shuffling of the training set causes the deviation of the test result.

5.4 Learning Curve Analysis
At the same time, for each dataset, we randomly select from 10% to
100% data from training set as training data. For BERT and BERT-
Sim, we have trained 5 times for each training scale of each dataset.
We show the results in Figure 7. Similarly, for ESIM and ESIM-Sim,
we have trained 10 runs; the results are shown in Figure 8.

To verify our hypothesis that word similarity knowledge is most
needed in the first layer, we explored an alternative approach for
comparison – to inject this knowledge into BERT’s attention on
all layers. We used the MRPC dataset in this analysis. The learning
curve is shown in Figure 9.
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Table 2: Example sentence pairs in the TwitterURL dataset. The four sentence pairs shares a common sentence.

Sentence pair Label
sa : Scientists create 3D-printed objects that can change shape after they are printed. Paraphrase
sb : Shape-shifting 3D printed objects are now a thing.
sa : Scientists create 3D-printed objects that can change shape after they are printed. Paraphrase
sb : 3D-printed objects change shape after printed an open door to new use cases.
sa : Scientists create 3D-printed objects that can change shape after they are printed. Non-paraphrase
sb : Imagine a drunk guy in the bar’s bathroom , watching the urinal cakes morph.
sa : Scientists create 3D-printed objects that can change shape after they are printed. Non-paraphrase
sb : 4D printed materials are the future of architecture . So many great potential applications , esp. in green design.

10 20 30 40 50 60 70 80 90 100
Percent of supervised training data(%)

50

60

70

80

BERT without Similarity Matrix
First attention head with Similarity Matrix
All attention heads with Similarity Matrix

Figure 9: The effect of adding prior knowledge to differ-
ent attention heads on the model performance on MRPC
dataset. The y-axis represents Macro-F1.

5.5 Discussion
In Table 1, on the two relatively small datasets (MRPC and STS-B),
we observe salient performance gain when knowledge is incor-
porated in the model (ESIM vs. ESIM-Sim; BERT vs. BERT-Sim).
On the two relatively large datasets (QQP and TwitterURL), the
performance gain is minimal if any. This is what we expected –
prior knowledge is most beneficial when the training data is small.
Comparing the performance gain within each model family, we
observe that BERT gains less performance than ESIM when the
word similarity knowledge is added. This echos with our finding in
Section 3 that a pre-trained BERT already contains much knowledge
about semantic textual matching tasks. In comparison, ESIM lacks
the same level of knowledge even it is initialized with pre-trained
word vectors.

Across the datasets, we observe that the gain in F1 score is mainly
caused by a salient increase in precision and a negligible decrease
in recall. In other words, prior knowledge mainly helped BERT
reduce false positives on the semantic text similarity task. This
implies that the original BERT may not be able to tell the subtle
semantic difference between a pair of related (but not synonymous)
words, and therefore wrongly classified non-paraphrase sentences
as paraphrases.

The learning curves in Figure 7 and 8 reveal a number of inter-
esting patterns. Our proposed method for adding prior knowledge
improves model performance almost consistently across all training
data sizes. It is encouraging to see that the injected prior knowledge
did not impose an unnecessarily strong inductive bias (in the sense

of bias-variance trade-off) to the models. In other words, the prior
knowledge is consistent with the learning objective and beneficial
to the models all along the learning process.

On MRPC, STS-B, and QQP datasets, prior knowledge provides
the most salient performance gain happens when the training data
is small, and the ESIM gains more than BERT. This is in agreement
with our observation in Table 1. Also note that BERT trained on 10%
to 20% of the training data can already outperform ESIM trained
on full training data, and BERT gains performance at a faster rate
than ESIM. This again highlights the rich knowledge and superior
learning capability of BERT, compared to non-Transformer models.
These findings suggest that it is most sensible to consider adding
knowledge to BERT if the training data is scarce, i.e. on the order
of hundreds of sentence pairs for a STS task.

In Figure 9, we compared the results between adding prior knowl-
edge to the first layer of BERT’s multi-head attention vs. adding
prior knowledge to all layers, on the MRPC dataset. We observe
that adding knowledge to all layers will impede the model from
learning, creating an undesirable inductive bias. In contrast, adding
knowledge to the first layer is more reasonable. This indicates that
the broad/uniform attention on lower layers of BERT needs to be
guided, while in higher layers attention heads have dedicated roles
in collecting specific syntactic and semantic information.

What’s peculiar is that on the TwitterURL dataset, we do not see
similar results as the other datasets. We speculate this is mainly
related to the form of the dataset. We show part of the TwitterURL
dataset in detail in Table 2. In the TwitterURL dataset, it often
happens that the same sentence sa corresponds to many different
sb ’s, so when we increase the training data from 10% to 100%, a
model does not see many completely new sentence pairs – it may
have already seen at least one of the two sentences. This explains
why the results obtained when the training data is 10% of the entire
training set are similar to the results on 100% training data.

In Section 3, we use synonym knowledge to augment the MRPC
dataset and train a BERT model that achieves 88.0 ± 0.4 % F1 score.
In Table 1, BERT-Sim achieves 88.3 ± 0.3 % F1 score using the same
form of knowledge. This suggests BERT-Sim performs at the same
level as (or slightly better than) a data-augmented BERT. In Table
3, we show this type of comparison on all four datasets. BERT-sim
slightly outperform data augmentation because it can inject word
similarity knowledge – e.g. “happy” and “glad” are synonyms –
into the model even if those words do not appear in the training
data. Whereas for data augmentation, if no sentence in the training
data contains the word “happy” or “glad”, then the knowledge
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that “happy” and “glad” are synonyms cannot be added by data
augmentation, i.e., replacing synonyms in training data. Therefore
the benefit of data augmentation depends on training data, while
the benefit of knowledge injection does not.

Table 3: Performance in four datasets (%) using data augmen-
tation and knowledge injection. We report for one metric
per dataset as the other metric has similar trends. Numbers
in parentheses are standard deviations.

Dataset / metric Data-augmented BERT BERT-Sim
MRPC / F1 88.0 (0.4) 88.3 (0.3)
STS-B / Pearson corr. 84.4 (0.7) 85.1 (1.2)
QQP / Accuracy 90.6 (0.3) 90.7 (0.4)
TwitterURL / F1 75.9 (0.7) 76.2 (0.7)

Note that because of extra training data, the data augmentation
approach takes twice as much time to train than directly injecting
knowledge into the model. Table 4 shows per-epoch training time
on four datasets. This highlights an advantage of our proposed
approach – it performs at least as well as the data augmentation
approach with only half the training time.

Table 4: Per-epoch training time (in seconds) on the four
datasets using data augmentation and knowledge injection.

Dataset Data-augmented BERT BERT-Sim
MRPC 73 36
STS-B 99 53
QQP 6372 3206
TwitterURL 775 338

6 CONCLUSION
In this paper, by analyzing what BERT has already known, what
task-specific knowledge BERT needs and where it needs it, we pro-
posed an effective and efficient method for injecting word similarity
knowledge into BERT without adding new training task but directly
guiding model’s attention. This method is also applicable to non-
Transformer deep model. Through experiments on different scale
datasets on the semantic textual similarity (STS) task, we prove
that the prior knowledge of word similarity is able to consistently
improve the STS performance of BERT and the benefit is especially
salient when training data is scarce.
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