Efficient Ordered Combinatorial Semi-Bandits for Whole-page Recommendation

Yingfei Wang\(^1\), Hua Ouyang\(^2\), Chu Wang\(^3\), Jianhui Chen\(^4\), Tsvetan Asamov\(^5\), Yi Chang\(^6\)

\(^1\)Department of Computer Science, Princeton University, yingfei@cs.princeton.edu
\(^2\)Apple Inc., hua_ouyang@apple.com
\(^3\)Nokia Bell Labs, chu.wang@nokia-bell-labs.com
\(^4\)Yahoo Research, jianhui@yahoo-inc.com
\(^5\)Department of Operations Research and Financial Engineering, Princeton University, tasamov@princeton.edu
\(^6\)Huawei Research America, yichang@acm.org

Abstract

Multi-Armed Bandit (MAB) framework has been successfully applied in many web applications. However, many complex real-world applications that involve multiple content recommendations cannot fit into the traditional MAB setting.

To address this issue, we consider an ordered combinatorial semi-bandit problem where the learner recommends \(S\) actions from a base set of \(K\) actions, and displays the results in \(S\) (out of \(M\)) different positions. The aim is to maximize the cumulative reward with respect to the best possible subset and positions in hindsight. By the adaptation of a minimum-cost maximum-flow network, a practical algorithm based on Thompson sampling is derived for the (contextual) combinatorial problem, thus resolving the problem of computational intractability. With its potential to work with whole-page recommendations and any probabilistic models, to illustrate the effectiveness of our method, we focus on Gaussian process optimization and a contextual setting where click-through-rate is predicted using logistic regression. We demonstrate the algorithms’ performance on synthetic Gaussian process problems and on large-scale news article recommendation datasets from Yahoo! Front Page Today Module.

Introduction

The Multi-Armed Bandit (MAB) problem is a classic and natural framework for many machine learning applications. In this setting, the learner takes an action and only observes partial feedback from the environment. MAB naturally addresses the fundamental trade-off between exploration and exploitation (Auer, Cesa-Bianchi, and Fischer 2002; Langford and Zhang 2008). Traditional MAB is a sequential decision making setting defined over a set of \(K\) actions. At each time step \(t\), the learner selects a single action \(I_t\) and observes some payoff \(X_{t,I_t}\). In stochastic MAB, the reward of each arm is assumed to be drawn from some unknown probability distribution. The goal is to maximize the cumulative payoff obtained in a sequence of \(n\) allocations over time, or equivalently minimize the regret.

MAB has been extensively studied, and many algorithms are proposed and have found applications in various domains. Some successful web applications are news and movie recommendation, web advertising, vertical search and query autocompletion (Li et al. 2011; Chapelle and Li 2011; Chu et al. 2011; Jie et al. 2013). Despite these advances, many real-world applications cannot fit into the traditional multi-armed bandit framework.

We use news article recommendation as a motivating example. Fig. 1 is a snapshot of a portal website. In this view, there are totally 6 slots to display news articles. These slots differ in positions, container sizes and visual appearance. Several studies (Liu et al. 2015; Lagun and Agichtein 2014) indicate that users do not sequentially scan the webpages. How to make whole-page recommendations, that is, select 6 articles from a larger pool and place them accordingly in the webpage, is a combinatorial problem that is beyond ranking. The goal is to find an optimal layout configuration to maximize the expected total click-through-rate (CTR). A related work on this topic is the optimal page presentation (Wang et al. 2016). Yet even though search engine works in a real time fashion, their models are trained on batch data rather than in an online learning setting, thus neglecting the exploration/exploitation tradeoff.

There are some existing work that addresses the bandits with multi-plays, for example, subset regret problems (Kale, Reyzin, and Schapire 2010; Gopalan, Mannor, and Mansour 2014; Wang et al. 2015; Gai, Krishnamachari, and Liu 2011; Swaminathan et al. 2016), batch-mode bandit optimization with delayed feedbacks (Desautels, Krause, and Burdick 2014) and ranked bandits (Radlinski, Kleinberg, and Joachims 2008). This class of learning problems was also recently formulated as a combinatorial bandit/semi-bandit (Gai, Krishnamachari, and Jain 2012; Audibert, Bubeck, and Lugosi 2013; Wen et al. 2015; Krishnamurthy, Agarwal, and Dudik 2016). However, the complex combinatorial setting in our example is beyond the capacity of existing methods.

To model this scenario, we consider the following ordered combinatorial bandit problem. Given optional context information, instead of selecting one arm, the learner selects a subset of \(S\) actions and displays them on \(S\) different positions from \(M\) possible positions. Our novelty lies in:

1. Our method does not resort to an oracle to provide approximation solutions. Instead, we formulate the problem via the minimum-cost maximum-flow network, and efficiently provide exact solutions.
2. To the best of our knowledge, our model is the first to
deal with general layout information where the number of positions can be larger than the subset of arms selected, i.e. $S < M$.

3. We use Thompson sampling as the bandit instance. One advantage of Thompson sampling is that no matter how complex the stochastic reward function, it is computationally easy to sample from the posterior distribution and select the action with the highest reward under the sampled parameter. Thus it has the potential to work with any probabilistic user click models, e.g. the Cascade Model and the Examination Hypothesis.

![Figure 1: An example of news article recommendation.](image)

Problem Settings

Due to position and layout bias, it is reasonable to assume that for every article and every position, there is a click-through-rate associated with the (content, position) pair, which specifies the probability that a user will click on the content if it is displayed in a certain position. In a sequence which specifies the probability that a user will click on the content, we call this setting as follows. Each past observation consists of a triplet (x_t, a_t, r_t) and the likelihood function of the reward is modeled in the parametric form $Pr(r|a, x, \theta)$ over some parameter set Θ. Given some known prior distribution over Θ, the posterior distribution of these parameters is given by the Bayes rule based on the past observations. At each time step t, the learner draws $\hat{\theta}$ from the posterior and chooses the action that has the largest expected reward based on the sampled $\hat{\theta}^t$, as described in Algorithm 1.

Thompson Sampling

In (contextual) K-armed bandit problems, at each round an optional context information x is provided. The learner then chooses an action $a \in A$ and observes a reward r. Thompson Sampling (Thompson 1933; Chapelle and Li 2011) for the contextual combinatorial bandits setting is best understood in a Bayesian setting as follows. Each past observation consists of a triplet (x_t, a_t, r_t) and the likelihood function of the reward is modeled in the parametric form $Pr(r|a, x, \theta)$ over some parameter set Θ. Given some known prior distribution over Θ, the posterior distribution of these parameters is given by the Bayes rule based on the past observations. At each time step t, the learner draws $\hat{\theta}$ from the posterior and chooses the action that has the largest expected reward based on the sampled $\hat{\theta}^t$, as described in Algorithm 1.

Algorithm 1: Thompson sampling

```
input : Prior Distribution $P(\theta)$ and history $D^0 = \emptyset$

for $t = 1$ to $T$ do
    Receive context $x_t$
    1. Draw $\hat{\theta}^t$ from $P(\theta|D^{t-1})$
    2. Draw action $a_t = \arg \max_a E[r|a, x_t, \hat{\theta}^t]$
    Observe reward $r_t$
    3. $D^t = D^{t-1} \cup \{x_t, a_t, r_t\}$
    Update posterior distribution $P(\theta|D^t)$
end
```

Algorithms for the Ordered Combinatorial Semi-Bandits

Our main algorithmic idea is to use Thompson sampling for ordered semi-bandits due to its flexibility for complex reward functions.

On each round t, the ordered combinatorial semi-bandit problem involves choosing S actions from a set A of K
actions to display in S (out of M) different positions, and receiving a reward that is the sum of the chosen subset. A naive approach is to treat each complex combination as a super arm and apply a traditional bandit algorithm which involves evaluating the values on all the super arms. This approach may have practical and computational limitations since the number of super arms blows up very quickly.

Suppose the likelihood function of the reward of each context x and (action, position) pair $a_{k,m}$ is modeled in the parametric form $\Pr(r|x, a, \theta)$. The next three sections develop special variants of Thompson sampling which efficiently find the optimal mapping $\pi_t : \{1, 2, ..., S\} \mapsto (A, \{1, 2, ..., M\})$ such that

$$
\pi_t^* \in \arg \max_{\pi_t} \sum_{s=1}^{S} \mathbb{E}[r_{\pi_t(s)}, x_t, \hat{\theta}] . \tag{1}
$$

Action selection as a constrained optimization

In order to find the best super arm π_t^* as in Eq. (1) without enumeration, we first denote the expected reward of each (action, position) pair $e_{k,m}$ at position p_m, given context x_t and sampled parameter $\hat{\theta}$, as $c_{k,m}$ to simplify notations. We also define indicator variable $f_{k,m}$ to denote whether action a_k is displayed at position p_m, $f_{k,m} \in \{0, 1\}$. We next translate a valid super arm into mathematical constraints. First, since each action can be displayed at most once, it corresponds to the constraint $\sum_k f_{k,m} \leq 1$, $\forall m = 1, ..., M$. Finally, there should be exactly S actions chosen, which is equivalent to $\sum_k \sum_m (f_{k,m} = S$. The maximization over the super arms in Eq. (1) can thus be represented as the following integer programming:

$$
\begin{align*}
\max \quad & \sum_{k=1}^{K} \sum_{m=1}^{M} f_{k,m} e_{k,m} \\
\text{subject to} \quad & \sum_{m=1}^{M} f_{k,m} \leq 1, \quad \forall k = 1, \ldots, K \\
& \sum_{k=1}^{K} f_{k,m} \leq 1, \quad \forall m = 1, \ldots, M \\
& \sum_{k=1}^{K} \sum_{m=1}^{M} f_{k,m} = S \tag{2} \\
& f_{k,m} \in \{0, 1\}, \quad \forall k = 1, \ldots, K, \ m = 1, \ldots, M
\end{align*}
$$

In general, integer programming problems cannot be solved efficiently. However, as shown in the next section, the given formulation can be interpreted as a network flow that admits polynomial time solutions [and enjoys interesting properties such as the max–flow min–cut duality (Vazirani 2013)].

Network flow

The integer optimization problem (2) can be interpreted as a minimum-cost maximum-flow formulation with edge costs $-e_{k,m}$ as depicted in Figure 2. The decision variables $f_{k,m}$ represent the amount of flow to be transferred along the edges of a bipartite graph with expected rewards $e_{k,m}$. In addition, S represents the total size of the network flow. Moreover, the flow capacity of the edges adjacent to the bipartite graph is 1, which implies that these edges can accommodate a flow of at most 1 unit. Furthermore, we can change integer programming formulation of (2) to a linear programming by relaxing the last set of constraints with their continuous equivalent $f_{k,m} \in [0, 1]$. The constraint matrices of such problems feature special properties:

Theorem 1 (Ahuja, Magnanti, and Orlin 1993) The node-arc incidence matrix of a directed network is totally unimodular.

Hence, we know that the set of constraints in the linear programming relaxation of problem (2) can be represented in standard form as $Ax = b$, $x \geq 0$ with a totally unimodular constraint matrix A. Since the incidence matrix of a graph has linearly independent rows and S is an integer, we know that the linear programming relaxation (2) of the super arm selection problem will result in an integer optimal solution $f^* \in \{0, 1\}^{K \times M}$ (Ahuja, Magnanti, and Orlin 1993). Furthermore, linear programming problems can be solved in polynomial time using interior-point methods (Nesterov, Nemirovskii, and Ye 1994), and therefore we can solve the super arm selection problem efficiently. Please note that in general, specialized algorithms for min–cost network flow problems can have better running times than the linear programming approach. However, such specialized methods usually do not allow for the introduction of addition constraints which can arise in practice, and the development and testing of such methods is beyond the scope of the current paper. For these reasons, we use a linear programming solver in our numerical experiments.

Thompson sampling for the combinatorial semi-bandits with Gaussian processes

As before, we make the assumption that there is an unknown reward function value $g(\cdot)$ for each (price, position) pair. In this section, we consider the cases where observations occur in a continuous domain. At each time, if we choose to measure a point $a_{k,m} \in (A, M)$, we get to see its function value perturbed by i.i.d. Gaussian noises.
Then, by finding the Hessian evaluated at \(\hat{w} \), we can compute the inverse variance of each weight \(w_j \) as:

\[
q_j = q_j + \sum_{i=1}^{n} \sigma(\hat{w}^T \mathbf{x}_i)(1 - \sigma(\hat{w}^T \mathbf{x}_i)) x_i^2.
\]

(4)

Hence the approximated posterior is \(w_j \sim N(\hat{w}_j, q_j^{-1}) \).

The past training example is made of \((x, a, p, r) \) with \(x \) as the context, \(a \) as the action, \(p \) as the position and \(r \) as a binary reward. Suppose each context \(x \) and action \(a \) is represented by feature vectors \(\phi_x \) and \(\psi_a \), respectively. To reflect the effect of different physical positions on the page, the click-through probability is modeled as \(Pr(r = 1|x, a, p) = \sigma(F(x, a, p)) \), where

\[
F(x, a, p) = \mu + \alpha^T \phi_x + \beta^T \psi_a + \sum_{m=1}^{M} \gamma_m \mathbb{1}(p, p_m),
\]

(5)

\(\sigma(z) = \frac{1}{1 + e^{-z}} \) is the logistic link function and \(\mathbb{1}(x, y) \) is the indicator function that is one if \(x = y \) and zero otherwise.

We use \(w \) to denote the unknown parameter set \(w = [\mu; \alpha; \beta; \gamma] \). At each round, we first draw a random parameter \(\hat{w}^t \) from the approximated posterior \(N(m_t, q_t^{-1}) \). Since reward \(r \) is Bernoulli distributed with \(Pr(r = 1|x, a, p) = \sigma(F(x, a, p)) \), we have \(E[r|a_k, m_t, \hat{w}^t] = \sigma(\Phi^T \hat{w}^t) \), where \(\Phi = [1; \phi_x; \psi_a; \epsilon_m] \) with \(\epsilon_m \) as a column vector with only the \(m \)th element one and zeros otherwise. We then use the linear programming to select the super arm \(\pi \) that maximizes the reward function (1) with \(E[r|a_k, m_t, \hat{w}^t] = \sigma(\Phi^T \hat{w}^t) \). Our model does not require the action set \(A \) to be fixed. This offers great benefit for web applications, in which, for example, the pool of available news articles for each user visit changes over time. The algorithm of Thompson sampling for the combinatorial semi-bandits with Bayesian logistic regression is summarized in Algorithm 2.

Algorithm 2: Thompson sampling for the combinatorial bandits with logistic regression

\[
\text{input} \ : \text{Regularization parameter } \lambda > 0 \\
m_j = 0, q_j = \lambda. \\
\text{for } t = 1 \text{ to } T \text{ do} \\
\hspace{1em} \text{Receive context } x_t \\
\hspace{2em} 1. \text{ Draw } \hat{w}^t \text{ from } N(m_j, q_j^{-1}) \\
\hspace{2em} 2. \text{ Compute } e_k = E[r|a_k, m_t, x_t, \hat{w}^t], \forall k, m \\
\hspace{2em} \text{ Solve the optimization problem (2) and get } [\hat{f}_{k,m}^t] \\
\hspace{2em} \text{ Display the super arm according to } [\hat{f}_{k,m}^t] \\
\hspace{2em} \text{ Observe rewards } r(t) \\
\hspace{1em} \text{ Update } m_j, q_j \text{ according to Algorithm Eq. (3)(4)} \\
\text{end}
\]

We close this section by briefly illustrating the flexibility on different choices of user click models. As an example, we consider the extended user click models with content quality features \(Q_i(a, p) \) (whether the quality of link above/below is better and the number of links above/below which are better) (Becker, Meek, and Chickering 2007):

\[
F(x, a, p) = \mu + \alpha^T \phi_x + \beta^T \psi_a + \sum_{m=1}^{M} \gamma_m \mathbb{1}(p, p_m) + \sum_{i=1}^{Q} \eta_i Q_i(a, p).
\]

Intuitively, if the action of interest is placed below a good action, the click-through rate will be lower. Therefore the quality feature
functions Q_i depends on the values of α and β. A boosting-style algorithm can be used to learn the parameters. In Bayesian settings, after we get a new batch of training data, we first set each $Q_i = 0$ and use Eq. (3) to find m_j and q_j. Next, we update the Q_i value using the updated m_j and q_j. We then use updated Q_i values to calculate Eq. (3) to get new values of m_j and q_j. We iterate this process until the first iteration in which the log-likelihood of the data decreases. We use the final m_j and q_j as the posterior parameter value from which we get the sampled ω and then solve the optimization problem (2) to select the super arms. That is to say, due to the unique properties of Thompson sampling, the user click model is encapsulated in its own probabilistic updates. Hence any probabilistic modeling of user clicks, e.g. the Cascade Model (Craswell et al. 2008) and the Examination Hypothesis (Richardson, Dominowska, and Ragno 2007), has the potential to be incorporated in our ordered combinatorial bandit settings.

Experiments

We provide experimental results on both synthesis datasets and Yahoo! Front Page Webscope datasets. We demonstrate the ability of our approach to solve real-world problems that can be modeled as probabilistic modeling of user clicks, e.g. the Cascade Model (Craswell et al. 2008) and the Examination Hypothesis (Richardson, Dominowska, and Ragno 2007), has the potential to be incorporated in our ordered combinatorial semi-bandits and that have not been thoroughly studied before.

Baseline algorithms

As baseline algorithms to compare against our proposed algorithms, we consider the following approaches.

Random. Randomly select S actions and S positions.

Unordered ϵ-Greedy (U-ϵ-greedy). It maintains an estimate of the function value of each action (regardless of positions). For the case of learning-to-rank with $S = M$, the exploitation part selects top-M actions based on current estimations and places them in order. For other cases where $S < M$ or for whole-page optimization which cannot translate to a ranked list, this approach does not apply since it is not obvious on how to place the actions.

Exploitation. This is an extension of pure exploitation algorithm based on our network flow techniques. It maintains an estimate of the function value of each (action, position) pair. At each step, instead of enumerating the values on all super arms or using any approximation heuristics, it can in fact benefit from the network flow formulation and use linear programming to find the exact solution of Eq. (2).

ϵ-Greedy. Use Exploitation with probability $1 - \epsilon$ and use Random with probability ϵ.

Ranked bandits (Radlinski, Kleinberg, and Joachims 2008). This approach works only for learning-to-rank with $S = M$. It runs an multi-armed bandit (MAB) instance MAB$_m$ for each rank m. MAB$_m$ is responsible for selective which action is displayed at rank m. If this action is already chosen at higher ranks, it randomly chooses a different action. The MAB instance is chosen as the UCB1-Normal algorithm (Auer, Cesa-Bianchi, and Fischer 2002) for context-free Gaussian processes optimization.

GP-UCB (Srinivas et al. 2009). This approach only works for Gaussian process optimization. A linear programing approach can not be used to select the best super arm with the highest upper confident bound. Hence we treat each complex combination as a super arm and apply the traditional GP-UCB algorithm which involves enumerating the values on all the super arms at each time step. Since the number of super arms explodes quickly, this approach does not scale.

Experiments on context-free Gaussian processes

We first consider learning-to-rank experimental settings with $S = M$. In terms of the true function values for each (action, position) pair, similar to the Examination Hypothesis (Richardson, Dominowska, and Ragno 2007) that lower-ranked places have lower probability to be examined, we assume that the value for each action k is discounted by e^{-d_k} at lowered ranks. Specifically, we use the arithmetic progression $\mu_k = 0.5 - 0.025k$, $k = 1, \ldots, K$, as the true function value for each arm k at rank 1. The value of (α_k, p_m) is then $c_{km} = \mu_k e^{-(m-1)d_k}$. To make the learning settings more interesting, d_k is randomly generated from $[0.3, 0.8]$ for different action k. Different sampling noise levels σ and different choices of S, M, K are used in the experiments. For Gaussian processes, we start with a mean vector of zeros and choose the Squared Exponential Kernel $k(x, x') = \sigma^2 \exp(-\beta_1 (k - k')^2 - \beta_2 (m - m')^2)$ with $\alpha = 100$, $\beta_1 = 0.2$, $\beta_2 = 0.1$ in the experiments.

The experimental results are reported on 100 repetitions. For Thompson sampling, we also consider the impact of posterior reshaping $K_i \rightarrow \sigma^2 K_i$ in the posterior sampling step. In particular, decreasing the variance would have the effect of increasing exploitation over exploration.

The first row in Fig. 3 shows the mean average regret of different algorithms at the best value of its tuning parameter across time. We also report the distribution of the regret at $T = 150$ of different algorithms with different parameter values in the second row. On each box, the central red line is the median, the edges of the box are the 25th and 75th percentiles, and outliers are plotted individually. The correspondence between algorithms and boxes is the following:

- Box 1-3: Thompson sampling (TS) with posterior reshaping parameter $\alpha = 0.25, 0.5, 1$.
- Box 4: Exploitation.
- Box 5: Random.
- Box 6-8: U-ϵ-greedy with $\epsilon = 0.02, 0.01, 0.005$.
- Box 9-11: ϵ-greedy with $\epsilon = 0.02, 0.01, 0.005$.
- Box 12-14: GP-UCB with $\alpha = 2, 1, 0.5$.
- Box 15-17: RBA with $\alpha = 4, 2, 1$.

It can be seen from the figure that Thompson sampling clearly outperforms others. It not only achieves the lowest regret, but also has small variance. The good performance of Thompson sampling is consistent with other empirical evaluations in existing literature on K-armed bandits. Without explicitly considering the position bias, the unordered ϵ-greedy does not yield good performances. RBA performs well on some datasets while poorly on others. One possible explanation is that even though we use RBA algorithm for multiple clicks per time, it is designed on one click per ranked list.

In terms of posterior reshaping, value of smaller α in general yields lower regret since it is in favor of exploitation over exploration. The price to pay is higher variance. As for the impact of noise level, the variance of the algorithm grows when the noise level increases. U-ϵ-greedy is the biggest victim and Thompson sampling is the least affected.

News Article Recommendation

We consider applying Thompson sampling for contextual combinatorial bandits to personalization of news article recommendation on Yahoo! front page (Agarwal et al. 2009; Li et al. 2011; Chapelle and Li 2011). Our work differs from previous literature in that rather than only recommending one article (e.g. only at the story position) at each user visit (see Fig. 1 for an illustration), we have the ability to optimize whole-page presentation. The candidate article pool is dynamic over time with an average size around 20. Suppose the user can click on more than one article during each view session. The goal is to maximize the total number of clicks.
In Yahoo! Webscope datasets (Yahoo! Webscope 2009), for each visit, the user and each of the candidate articles are associated with a feature vector (Chu et al. 2009). We treat each user vector as the context information x and the news articles as actions a. We set the number of possible positions $M = 5$. We use recursive Bayesian logistic regression (Eq. (3)(4)) based on the user click model (5) to predict article CTRs.

We cannot use the unbiased offline evaluation (Li et al. 2011) in our case. Since in the combinatorial problems, the number of super arms is gigantic (e.g. $\binom{20}{5} = 15504$), it is rare to have a logged data point that matches the selected super arm. This reduces the effective data size substantially.

Based on the real-world context and article features in the Yahoo! Webscope datasets, we instead simulate the true clicks using a weight vector w^*. To make it more realistic, we first use all the user click data on May 1, 2009 to train a weight vector using logistic regression and then construct w^* by perturbation. We experiment with different choices of S. For the reasons explained in baseline algorithms, we compare our approach with Random, Exploitation and ϵ-greedy.

Since in a real-world system, it is infeasible to update the model after each user feedback, we model this behavior by refreshing the system after every 10 minutes. We report the average reward after 590,747 user visits that is normalized with respect to the number of selected actions in Table 1.

Thompson sampling yields the best result. Exploit and ϵ-greedy have similar performance. It is consistent with the previous findings that the change in context induces some exploration (Chapelle and Li 2011).

In order to demonstrate the practicability and scalability of our algorithm, we report run-time numbers as follows. The experiments are run on a Linux server [Intel(R) Xeon(R) CPU X5650 2.67GHz, 8G memory]. The average running time of each LP is below 0.01s (per impression). In order to further test the scalability, we set the number of positions to $M=20$, which is enough in web applications. The average running time is below 0.05s. The delay for model refresh under Thompson sampling after every 10 minutes is around 9s. We emphasize that the goal of the experiments is not to claim the superiority of Thompson sampling, but to demonstrate our ability to optimize whole-page representation beyond ranking.

Conclusion

In this paper, we extend the traditional multi-armed bandit problems to a more general ordered combinatorial setting. This is motivated by many web applications with whole-page recommendation. By the adaptation of a min-cost max-flow network, a practical algorithm based on Thompson sampling is derived for (contextual) combinatorial semi-bandits, which does not resort to an oracle to provide approximation solutions. Our method has the ability to work with general layout information where the number of positions can be larger than the subset of arms selected and thus can optimize whole-page representation. Due to the unique properties of Thompson sampling, the system update is encapsulated in the chosen probabilistic models. This provides easy incorporation of any probabilistic (user click) models in our proposed framework. We demonstrate the algorithms’ performance on synthetic Gaussian process problems and on news article recommendation dataset from Yahoo! Front Page Today Module.
References

