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Abstract—In social media analysis, one critical task is detecting
burst of topics or buzz, which is reflected by extremely frequent
mentions of certain key words in a short time interval. Detecting
buzz not only provides useful insights into the information prop-
agation mechanism, but also plays an essential role in preventing
malicious rumors. However, buzz modeling is a challenging task
because a buzz time-series usually exhibits sudden spikes and
heavy tails, which fails most existing time-series models. To deal
with buzz time-series sequences, we propose a novel time-series
modeling approach which captures the rise and fade temporal
patterns via Product Life Cycle (PLC) models, a classical concept
in economics. More specifically, we propose a mixture of PLC
models to capture the multiple peaks in buzz time-series and
furthermore develop a probabilistic graphical model (K-MPLC)
to automatically discover inherent life cycle patterns within
a collection of buzzes. Our experiment results show that our
proposed method significantly outperforms existing state-of-the-
art approaches on buzzes clustering.
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I. INTRODUCTION

Social media is growing at an explosive rate, and hundreds

of millions of users generate vast amounts of contents on

various social media web sites, such as Twitter and Tumblr.

One critical problem in social media analysis is to effectively

model buzz events, which are reflected by frequent mentions of

certain key words in a short time interval, such as new iPhone

or Hurricane Sandy. Since the buzz events are closely related

to human activities, effectively modeling buzzes could help us

track mass attention, obtain public opinions, or forecast users’

reactions to a particular event in the near future.

Buzz modeling is an extremely challenging problem since

many buzz events are unforeseeable (e.g., earthquakes or

hurricanes), while others may involve human interventions. As

a result, a buzz time-series, which consists of the number of

mentions for each time unit, usually exhibits sudden spikes

and heavy tails. Thus, it is very hard to represent a buzz

time-series using traditional time-series models [3]. Existing

buzz modeling methods use simple time-series models (e.g.,

univariate models), and explore additional feature cues (such

as sentiment, spreading measures and controversialist), to

predict whether a certain topic can become viral [7], [15], [5].

These methods achieve success to a certain extent, but few

of them explicitly capture the inherent temporal patterns of

buzzes. Effective buzz models, which not only can capture

those sudden spikes and heavy tails patterns but also can

differentiate true spikes from jagged noise in a time-series

sequence, are in great need.

One important challenge in pursuit of effective buzz models

is how to find distinct temporal patterns within a set of buzz

time-series. For example, as seen in Figure 1, Euro 2012

attracted more and more frequent mentions when it came close

to its final match day, a sudden increase of frequency happened

when the final match started, and the large volume was main-

tained for a couple of hours during the final match, after which

the mention volume dropped dramatically in just a few hours

on social media. Therefore capturing the temporal patterns and

modeling the inherent structures of these temporal patterns can

provide us useful insights into information propagation[22]

and buzz prediction in social media.

In this paper, we propose to model rise-and-fade temporal

shapes using product life cycle (PLC) models [16]. PLC

was originally introduced by economists to model the life

span of a product: introduction to the market (initial sales),

growth (sudden increase of sales), equilibrium (maturity phase

defined by approximately constant sales) and decline (when

the sales decrease dramatically). In Figure 1, we can observe

4 different stages, which are segmented with dotted lines. In

general, for different types of buzz events, the growth and

equilibrium stages might be relatively short, while the decline

stage varies. Moreover, a buzz sequence often has multiple

peaks, and the number of peaks is unknown in advance.

To handle a time-series sequence with multiple peaks, we

first propose to model each buzz with a mixture of PLC

models, which is parameterized by weights, shapes, decay

times, and locations of each individual PLC model. Then,

we propose an efficient L1-regularized approach to achieve

a sparse solution for the PLC mixture models. Second, to

discover the underlying patterns in a collection of buzz time-

series, we develop a probabilistic graphical model, K-Mixture

of Product Life Cycle (K-MPLC), to automatically group buzz

time-series based on the PLC mixture parameters.

Through experiments, we compare the proposed approach

with state-of-the-art time-series modeling and clustering meth-

ods including SpikeM [19], K-spectral centroid algorithm

(K-SC) [25], and the spectral clustering with the dynamic

time warping (DTW+Spectral) [26]. As compared to K-SC,

DTW+Spectral, and SpikeM, the proposed approach can sys-

tematically capture the sharp and heavy-tailed peaks via the

decay parameter. The experimental results show that K-MPLC



Fig. 1. Buzz time-series of Euro 2012.

compares favorably with K-SC and DTW+Spectral for buzzes

clustering.

Contributions: The major contributions of this paper include:

(i) leveraging the product life cycle concept to model the

temporal patterns of buzz events; (ii) a flexible mixture of PLC

model to systematically model the possible multiple peaks in

a buzz time-series sequence and achieve sparse solutions via

the Lasso based approach; (iii) a probabilistic graphical model

to discover the inherent clusters within a collection of buzzes.

II. RELATED WORK

Time-series modeling: To model the temporal patterns of

online content, Matsubara et al. [19] propose an algorithm to

model the rise and fall patterns of influence propagation. Hong

et al. [8] attempt to model the time decay of topics on Twitter

with Gamma function. Furthermore, the temporal information

of online forums [6], blogspace [13], and online groups [12]

has been explored and mined under different scenarios, and

spatiotemporal patterns of subtopics have been investigated

by [20]. However, most of the existing methods can only deal

with single spike signal. Thus, existing time-series modeling

methods are not suited for buzz events with multiple spikes.

Time-series clustering: Time-series clustering has been an

active research topic in recent years, and various time-series

clustering algorithms are proposed such as batch mode clus-

tering [21], [17], incremental clustering [18], and anytime

clustering [26]. One of the important component of time-series

clustering is to choose a distance metric, and Dynamic Time

Warping (DTW) and Complexity-Invariant Distance (CID) are

the most widely used metrics [26], [1]. Clustering algorithms

have been applied to various types of time-series data, includ-

ing snippets within long time-series [21], different time-series

streams [17], and multiple time-series matrix [10]. However,

for extremely noisy buzz time-series sequences, DTW scores

tend to be inaccurate, and thus clustering performance can be

degraded.

The most similar work to ours is that of Yang and Leskovec

[25], in which the K-spectral centroid (K-SC) algorithm is

proposed to group similar time-series via aligning peaks,

shifting over time-axis, and scaling over frequency-axis. The

K-SC algorithm can cluster time-series that can be aligned by

shifting and scaling operations, but fails for sharp or heavy-

tailed temporal sequences. Moreover, if two time-series share

similar peak shapes but differ in the intervals between the

peaks, K-SC cannot identify these two time-series as the same

cluster through simple shifting or scaling.

III. MODELING BUZZES WITH MIXTURES OF PRODUCT

LIFE CYCLE MODELS

A. Product Life Cycle Models

The concept of Product Life Cycle (PLC) was originally

proposed in economics in the 1960s [16]. The classical view

of PLC assumes 4 phases to cover the life span of a product:

introduction, growth, equilibrium and decline. Introduction

stage refers to low growth rate of sales as the product is

newly launched in the market; growth stage implies that the

public gains awareness of the product and consumers come

to understand its benefits and accept it, so that a company

can expect a period of rapid sales growth; equilibrium stage

corresponds to the product reaching maturity, so that the sales

growth slows and sales volume eventually peaks and stabilizes;

decline stage indicates that the product enters into decline, as

sales and profits start to fall because the market has become

saturated, the product has become obsolete, or customer tastes

have changed. Many different versions of PLC models are

introduced in [3].

To model the long decay trend of the decline stage of a

product, Isaic-Maniu and Voda [9] propose to use the Gamma

distribution as a PLC model. The probability density function

of Gamma distribution is:

f(t;α, β) =
βα

Γ(α)
tα−1e−βt, (1)

where t ≥ 0, α > 0 is the shape parameter, β > 0 is the rate

parameter, and the Gamma function Γ(α) is defined as:

Γ(α) =

∫
∞

0

tα−1e−tdt.

As compared to other distribution functions, such as the

Gaussian distribution, the Gamma distribution can model a

sudden rise and long decay trend in the decline stage of a PLC.

Note that our method is not limited to the Gamma distribution,

and it can be generalized to other base PLC models as well,

such as the the Alpha distribution [9].

B. Mixtures of PLC Model

Given a buzz topic, we count its mentions on a given social

media channel during a pre-determined time interval (e.g., an

hour), and generate a time-series sequence of this topic over

a number of intervals during an observation window. Since a

buzz sequence may consist of several obvious peaks, it could

be modeled with multiple PLC models. As the number of

peaks is not known in advance, we model a buzz sequence

with a mixture of PLCs as:

f(t;w,α,β,µ) =

L∑

`=1

w`f(t;α`, β`, µ`), (2)

f(t;α, β, µ) =

{
Z−1(t− µ)α−1e−β(t−µ) (t ≥ µ)
0 (Others)

,



where L is the number of PLC models, w = [w1, . . . , wL]
>

denotes the weight vector, > denotes the matrix transpose,

α = [α1, . . . , αL]
> and β = [β1, . . . , βL]

> are the vectors of

Gamma distribution parameters, µ = [µ1, . . . , µL]
> refers to

locations of PLC models, and Z is the normalization factor.

C. Mixtures of PLC Model Estimation

Let us denote buzz time-series as y = [y1, . . . , yT ]
>, where

T refers to the length of time-series. Note, in this paper, we

assume time-series are normalized (i.e.,
∑T

t=1 yt = 1), so that

it can be modeled by probability density functions. Then, the

optimization problem of fitting the buzz time-series using a

mixture of PLC models can be formulated as:

min
w,α,β,µ

T∑

t=1

(yt − f(t;w,α,β,µ))2

s.t. α` > 0, β` > 0, w` > 0, µ` > 0, ` = 1, 2, . . . , L.

We can solve this optimization problem by using gradient

descent. However, since this optimization problem is non-

convex, it tends to lead to poor local optimum solutions.

To deal with the non-convexity problem, we first relax the

problem to a convex optimization problem and then propose

a Lasso based approach [23], making it possible to obtain a

global solution. The idea of the Lasso based approach is to

select L PLC models from a large number of PLC candidates.

More specifically, we first define TMαMβ basis functions,

where Mα and Mβ are the number of candidate values for

α and β, so that each basis function corresponds to a PLC

model with fixed α and β parameters placed at µ. Note that,

since a PLC model can be located at any of T positions, the

total number of basis functions is TMαMβ .

Then, we solve the following optimization problem:

min
v

‖y −Kv‖2 + λ‖v‖1 (3)

s.t. v` ≥ 0, ` = 1, 2, . . . , TMαMβ,

where v ∈ R
TMαMβ is the model parameter and K ∈

R
T×TMαMβ is the pre-computed Gamma distribution func-

tions:

Kt,µ×i×j =

{
Z−1
ij (t− µ)α̃i−1e−β̃j(t−µ) (t ≥ µ)

0 (Others)
.

In the above formula, Zij = max({(t −

1)α̃i−1e−β̃j(t−1)}Tt=1) is the normalization factor,

α̃i, i = 1, . . . ,Mα and β̃j , j = 1, . . . ,Mβ are pre-

defined Gamma parameters, µ is the location index of a PLC

model (t − µ indicates the shift of a PLC along x-axis),

and ‖v‖1 is the L1 regularizer to avoid overfitting. Since

the optimization problem of Eq.(3) is convex with respect

to v, Eq.(3) can be solved by using a state-of-the-art Lasso

optimization solver. In this paper, we employ the dual

augmented Lagrangian (DAL) based approach [24]. Since

we use the L1 regularizer, we can select a small number of

non-overlapped basis functions.

After the Lasso fitting, we first obtain M PLC models

(M > L) with using a small regularization parameter, and then

select L PLC models from them. After fixing individual PLC

parameters with Lasso, we solve the following quadratic pro-

gramming (QP) problem to obtain the corresponding weight

w for each PLC model:

min
w

‖y − K̃w‖2, s.t. w` ≥ 0,
L∑

i=1

wi = 1,

where K̃ ∈ R
T×L is the selected L basis functions from

K . We call this entire Lasso based fitting framework as PLC

Lasso.

IV. CLUSTERING BUZZES USING K-MPLC

In this section, we first propose three types of features for

characterizing buzz time-series. Then, in order to discover

underlying similar patterns in a set of buzz time-series, we

propose a novel probabilistic graphical model, K-Mixture of

Product Life Cycle (K-MPLC), to cluster N time-series based

on their PLC parameters.

A. Feature Extraction

We obtain estimated model parameters w, α, β, and µ

for each buzz time-series sequence using the PLC Lasso.

However, some of those parameters may not be useful for

buzzes clustering. For example, if buzz time-series are not

aligned according to their peak positions, location of each PLC

model varies, and it may not be possible to obtain meaningful

clusters using absolute PLC locations. Thus, in this paper,

we propose three types of effective and robust features for

characterizing buzz time-series sequences.

Weight parameters: To capture the shape information of a

time-series sequence, we use the normalized weight parame-

ters obtained by PLC Lasso fitting ŵ. The number of weight

parameters relies on the number of PLC models.

Inverse β of the maximum PLC: To discriminate sharp-tailed

and heavy-tailed buzz sequences, we propose the following

feature:

τ = β−1
imax

,

where imax is the index of the largest PLC with respect to

weight w.

Standard deviation of PLC locations: To discriminate buzz

time-series with single peak from multiple peaks, we propose

the following feature:

σ =

√√√√ 1

L

L∑

`=1

ŵ`(µ` − µ′)2,

where µ1, . . . , µL are locations of PLCs and µ′ =∑L

`=1 ŵ`µ` is their weighted mean.

B. K-MPLC

To discover the underlying similar patterns of buzz time-

series, we propose a probabilistic graphical model, K-Mixture

of Product Life Cycle (K-MPLC), to cluster N time-series into

K groups. Throughout this paper, we assume K is known.



Fig. 2. Graphical Model of K-MPLC.

Suppose that we are given N buzz time-series and their

corresponding parameters W = [w1, . . . ,wN ] ∈ R
L×N , τ ∈

R
N , and σ ∈ R

N . Given distinct characteristics over different

parameter vectors, we use a Dirichlet distribution to model

the weight vector w as its sum needs to be 1. Since τ and σ

take positive values, we use the Gamma distribution to model

them separately. The graphical model we propose is shown in

Figure 2.

Specifically, the probability for each instance is:

p(w,τ,σ|π,Θ,a,b,a′,b′)=

K∑

k=1

πkp(w|θk)p(τ |ak, bk)p(σ|a
′

k, b
′

k).

Here, π = [π1, . . . , πK ]> are the mixture weights, and

p(w|θk) = C(θk)
L∏

i=1

wθki−1
i ,

p(τ |ak, bk) =
bak

k

Γ(ak)
τak−1e−bkτ ,

p(σ|a′k, b
′

k) =
b′k

a′

k

Γ(a′k)
σa′

k−1e−b′kσ

are Dirichlet and Gamma distributions, C(θ) =
Γ(

∑
L
i=1

θi)

Γ(θ1)Γ(θ2)...Γ(θL) , and Γ(a) =
∫∞

0
ta−1e−tdt.

In this paper, we use maximum likelihood estimation to

estimate the model parameters. Specifically, the optimization

problem for the proposed model can be given as:

max
π,Θ,a,b,a′,b′

N∑

j=1

log p(wj ,τj ,σj |π,Θ,a,b,a′,b′)

s.t.

K∑

k=1

πk = 1, θik > 0, ak > 0, bk > 0, a′k > 0, b′k > 0.

In this paper we use the expectation-maximization (EM)

algorithm to solve this problem.

V. CLUSTERING EXPERIMENTS

Methods: We compare the proposed K-MPLC algorithm with

K-means algorithm, Gaussian mixture model (GMM) [2], and

K-SC [25]. K-means, which is a general clustering algorithm,

is considered as a baseline; if we assume each time-series

vector y is generated i.i.d. from a multivariate normal distri-

bution, then GMM would be a reasonable baseline as well;

K-SC, which is the state-of-the-art algorithm for buzz time-

series clustering, provides a more competitive comparison

point. SpikeM [19], which is the state-of-the-art algorithm for

buzz time-series modeling, is considered another baseline. As

SpikeM does not handle time-series clustering, we concatenate

all parameters extracted by SpikeM as features for K-means

and GMM, and we denote them as SpikeM+K-means and

SpikeM+GMM respectively. We also compare with a DTW-

based anytime clustering algorithm [26], which is denoted

as DTW+Spectral, whose basic idea is first to generate a

DTW matrix to measure the non-metric distance between any

two time-series, then apply a spectral clustering algorithm on

the DTW matrix. In addition, we concatenate all the PLC

Lasso features w, τ , and σ and use them as features for K-

means and GMM, and we denote them as Lasso+K-means and

Lasso+GMM. We denote our proposed method as Lasso+K-

MPLC, where we set α to be 1 and β can take values of

[0.1, 0.2, . . . , 1.0] in our experiments. To avoid fluctuation due

to random factors, we set the initialization of GMM and K-

MPLC to be the clustering indexing of K-means. In addition,

we run all experiments 10 times, and report the average

evaluation metrics.

Dataset: To evaluate the effectiveness of the K-MPLC algo-

rithm, we select thousands of high frequency search queries as

candidate buzz topics and collect mentions from social media

sites from June 22nd to August 8th, 2012. Considering the

number of mentions of a topic per hour, we generated a time-

series sequence for the topic within a time window. If the

number of mentions at time t in a topic is 10 times higher than

the average mention numbers in the past 48 hours, we regard

the topic at that time as a buzz topic. According to [14],

[4], hot topics on social media lose their attraction quickly,

therefore, we select a time window of 72 hours, and obtain

a 72-dimension time-series sequence y for each buzz topic.

Finally, we collected the general buzz dataset, which contains

534 buzz time-series: most of them are celebrity names, such

as Michael Phelps and Tyler Perry; the rest are event names,

such as Euro 2012 and UFC 148. In our experiments, time-

series sequences are not aligned according to their peaks.

That is, the data set used in this paper is a more challenging

dataset than the one used for K-SC [25]. All time-series in

the dataset are manually labeled into 5 clusters based on their

distinct temporal shapes: time-series containing single sharp

peak are labeled as 1; sequences with single heavy-tailed peak

are labeled as 2; curves with double sharp peaks are labeled as

3; time-series containing double peaks (at least one is heavy-

tailed) are labeled as 4; time-series with more than 3 peaks

are labeled as 5.

Evaluation Metrics: We use Adjusted Rand Index (ARI)

and Normalized Mutual Information (NMI)[11], where both

metrics are the larger the better.

Evaluation Results: Figure 3 (a) shows the clustering results

of different algorithms on the general buzz dataset. In this



experiment, each time-series sequence is modeled by a mixture

of 3 PLC models. It clearly shows that Lasso+K-MPLC per-

forms the best among all algorithms: its ARI and NMI scores

are 0.2714 and 0.2628, which is much better than others. K-

SC performs the second best among all algorithms. Although

SpikeM provides good results for time-series modeling, its

parameters are not effective as features for K-means or GMM.

In order to figure out the effectiveness of PLC Lasso and K-

MPLC separately, we also combine PLC Lasso parameters

as features with existing clustering methods. With the help

of PLC Lasso based features, Lasso+K-means and Lasso+K-

means compare favorably with K-SC, and their metrics gaps

to Lasso+K-MPLC indicates the effectiveness of K-MPLC.

To further compare the proposed algorithm with other

baseline approaches, we change the number of existing cluster

labels in the data set to obtain more experimental results.

• 4-label clustering ground truth: we combine the se-

quences originally labeled as 3 and 4 into the same

cluster, while the remaining is the same.

• 3-label clustering ground truth (different number of

peaks): we combine the sequences originally labeled as 1

and 2 into one cluster, combine the sequences originally

labeled as 3 and 4 into another same cluster, and leave

the remaining the same.

• 2-label clustering ground truth (Single peak vs. multi-

ple peaks): we combine the sequences originally labeled

as 1 and 2 into one cluster, and combine the sequences

originally labeled as 3, 4 and 5 into the other cluster.

Comparing with Figure 3 (a)-(d), overall, the observations

are quite consistent: the Lasso based approach shows its

effectiveness on K-means and GMM; DTW + Spectral usually

performs the 2nd best among all, and the DTW based approach

is more robust than K-SC on this dataset; K-MPLC always

performs the best. Notice that, with decreasing of cluster

numbers K , the difficulty of clustering also decreases. In our

experiment, the absolute evaluation metrics of K-MPLC is in-

creasing (ARI is 0.2930 when K = 5, and ARI is 0.3857 when

K = 2), which also shows the effectiveness of our proposed

method. On the other hand, K-SC and DTW+Spectral perform

worse when K is smaller, such as K = 2. One possible

reason is that one of two clusters consists of single sharp

peak and single fat peak sequences. More specifically, for K-

SC and DTW+Spectral, the distance between single sharp peak

sequences and single fat peak sequences can be larger than the

one between single sharp peak sequences and multiple peaks

sequences, and thus single peak and multiple peaks tends to

be clustered together.

Figure 4 illustrates the clustering results with different PLC

numbers L. In this experiment, it is clear that each sequence

with a mixture of 3 PLC models consistently outperforms

that of using 2 or 4 PLC models. One possible explanation

is that in our general buzz dataset, as the ground truth is to

differentiate curves with 1 peak or 2 peaks from 3 or more

peaks, representing each time-series sequence as a mixture of

3 PLC models is the most appropriate, while leveraging 4 PLC

models might bring in more noisy information, and leveraging

2 PLC models are least robust.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented our study to model the sudden

spikes and heavy-tailed patterns of buzz events on social

media with product life cycle models (PLC). Specifically, we

model a time-series sequence with a mixture of PLC models,

and propose an efficient Lasso based parameter estimation

approach. Then, we proposed a novel probabilistic model to

cluster buzz time-series with similar temporal patterns into the

same group based on the features obtained from the mixture

of PLC models. A novelty of the proposed approach is that

it can distinguish a buzz time-series sequence with a sharp

peak from a buzz sequence with a heavy-tailed peak, and our

proposed method significantly outperforms the current state-

of-the-art algorithms on the buzz clustering tasks.

Our work can be extended as follows. First, we can use

a group regularizer instead of the L1 regularizer to model

buzz time-series, which is the most promising future direction.

Second, since the Gamma distribution function is not suited

for modeling the slow rising trend in the introduction stage or

growth stage of a product, it would be interesting to explore

other PLC models. Third, in this paper, we only deal with a

segment of time-series within a fix size of time window. In the

future, we will leverage PLC model to split a long time-series

sequence into different segments, and combine with social

media content to mine more interesting findings.
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(b) Clustering results on 4-label ground truth.
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(c) Clustering results on 3-label ground truth.
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(d) Clustering results on 2-label ground truth.

Fig. 3. Clustering results on General Buzz Dataset with different Labels.
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(a) ARI over different number of PLC numbers.
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Fig. 4. Clustering Results on the General Buzz Dataset with Different PLC Numbers.
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