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ABSTRACT
As the online advertising industry has evolved into an age of di-
verse ad formats and delivery channels, users are exposed to com-
plex ad treatments involving various ad characteristics. The diver-
sity and generality of ad treatments call for accurate and causal
measurement of ad effectiveness, i.e., how the ad treatment causes
the changes in outcomes without the confounding effect by user
characteristics. Various causal inference approaches have been pro-
posed to measure the causal effect of ad treatments. However, most
existing causal inference methods focus on univariate and binary
treatment and are not well suited for complex ad treatments. More-
over, to be practical in the data-rich online environment, the mea-
surement needs to be highly general and efficient, which is not ad-
dressed in conventional causal inference approaches.

In this paper we propose a novel causal inference framework for
assessing the impact of general advertising treatments. Our new
framework enables analysis on uni- or multi-dimensional ad treat-
ments, where each dimension (ad treatment factor) could be dis-
crete or continuous. We prove that our approach is able to provide
an unbiased estimation of the ad effectiveness by controlling the
confounding effect of user characteristics. The framework is com-
putationally efficient by employing a tree structure that specifies
the relationship between user characteristics and the correspond-
ing ad treatment. This tree-based framework is robust to model
misspecification and highly flexible with minimal manual tuning.
To demonstrate the efficacy of our approach, we apply it to two
advertising campaigns. In the first campaign we evaluate the im-
pact of different ad frequencies, and in the second one we consider
the synthetic ad effectiveness across TV and online platforms. Our
framework successfully provides the causal impact of ads with dif-
ferent frequencies in both campaigns. Moreover, it shows that the
ad frequency usually has a treatment effect cap, which is usually
over-estimated by naive estimation.
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1. INTRODUCTION
In the current online advertising ecosystem, user are exposed to

ads with diverse formats and channels, and user’s behaviors are
caused by complex ad treatments combining of various factors. The
online ad delivery channels include search, display, mail, mobile
and so on. Besides the multi-channel exposure, ad creative charac-
teristics and context may also affect ad effectiveness [33]. Hence
the ad treatments are becoming a combination of various factors
mentioned above. The complexity of ad treatments calls for accu-
rate and causal measurement of ad effectiveness, i.e., how the ad
treatment causes the changes in outcomes 1.

Ideally, the gold standard of accurate ad effectiveness measure-
ment is the experiment-based approach, such as A/B test, where
different ad treatments are randomly assigned to users. However,
the cost of fully randomized experiments is usually very high [10,
25, 35] and in some rich ad treatment circumstances, such fully
randomized experiments are even infeasible. The major obstacles
to achieve fully randomized experiments are as follows. 1) Imple-
menting a platform for supporting ideal experiments, i.e., perfect
randomization, often involves the change of system architecture,
which might cause much prohibited engineering effort. 2) When
the treatments are a combination of various factors, one might not
be able to fully explore all possible combinations of treatments due
to the lack of population. 3) The treatment may not be feasible for
large-scale experiments, such as the number of ad impressions. In
online advertising, it is easy to randomly assign users to see or not
see the ad impression, but it is difficult to fully control the number
of impressions, except utilizing field experiment 2, which is costly
and usually can be conducted only on a relatively small scale. 4)
Even if the experiments are perfectly randomized and the ad treat-
ments can fit into an experiment framework, one still should be cau-
tious due to the fact that the randomized experiments may hurt both
user experience and ad revenue. Hence it is critical and necessary
to provide statistical approaches to estimate the ad effectiveness di-
rectly from observational data rather than experimental data.

Previous studies based on observational data try to establish di-
rect relationship between the ad treatment and a success signal, e.g.,
purchase, brand keyword searching [1], and etc. However, in obser-
1An outcome is the user’s response in the ad campaigns, such as
whether or not the user clicks a link, searches for the brand or visits
websites. A success is an action favored by the advertiser, such as
click, search or site visitation.
2A field experiment is a research study conducted in a natural set-
ting in which the experimenter manipulates one or more indepen-
dent variables under carefully controlled conditions [17].



vational data, typically the user characteristics may affect both the
exposed ad treatment and the success tendency. Such confounding
effects of user characteristics are called ‘selection biases’ [32], and
ignoring the confounding effects may lead to biased estimation of
the treatment effect [32]. For example, assume in an auto campaign
all of exposed users are males and all of the non-exposed users are
females. If the males generally have a larger success rate than fe-
males, the effectiveness of the campaign could be overestimated
because of the confounding effects of the user characteristics—in
this case, gender: It might just be that males are more likely to
be exposed and perform success actions. Therefore, the relation-
ship between the ad treatments and the success is not causal with-
out eliminating the selection bias. A straightforward approach at-
tempting to eliminate the selection biases is to adjust the outcome
with the user characteristics using supervised learning. However
the user characteristics may have complex relationships, e.g., non-
linearity, with the treatments and the outcome, and it is not trivial to
estimate the causal effect of the treatment by adjusting the outcome
with the user characteristics directly.

To address the aforementioned problems, the causal inference
has started to attract attention in the online advertising field [10, 13,
35, 38] . Causal inference aims to infer unbiased causality effect of
the ad treatment from observational data on chosen outcome met-
ric, e.g., the effect of ads on success rates, by eliminating the impact
of the confounding factors such as user characteristics. However,
measuring general/complex ad treatment effectiveness is still fac-
ing three major challenges. First, the general ad treatment can be
much more complex than binary ad treatment. It could be a discrete
or continuous, single- or multi-dimensional treatment. To design an
analytics framework encompassing so many ad factors is not trivial.
Second, the online observational dataset typically has huge volume
of records and user characteristics, which demands the methodol-
ogy to be highly efficient. Traditional statistical causal inference
approaches usually cannot reach efficiency required by the adver-
tising industry. Third, when the treatments become more complex,
existing methods are usually sensitive to parameter settings (more
details in Section 5). To overcome the sensitivity, a robust causal
inference approach is also wanted.

In this paper, we propose a computationally efficient tree-based
causal inference framework to tackle the general ad effectiveness
measurement problem. Our model is well suited for the online ad-
vertising datasets which consist of complex treatments, huge vol-
ume of users, and high-dimensional features. The novelty and ad-
vantages of the proposed method can be summarized as follows:

• Our causal inference is fully general, where the treatment
can be single- or multi-dimensional, and it can be binary,
categorical, continuous, or a mixture of them. We prove that
this framework offers an unbiased estimation of the treatment
effect under standard assumptions.

• Compared to previous causal inference work, the proposed
approach is more robust and highly flexible with minimal
manual tuning. Our tree-based approach automatically de-
termines the important tuning parameters that were chosen
arbitrarily in the traditional causal inference methods in a
nonparametric way. In addition, it is easy to implement and
computationally efficient for large scale online data.

• The tree-based framework is further wrapped in a bagging
(boostrapping) procedure to enhance the stability and im-
prove the performance of the final estimator. More impor-
tantly, our bagged strategy provides with statistical inference
of the obtained point estimators, where the confidence inter-
vals of the estimated treatment effects could be established
for hypothesis testing purpose.

We apply the framework to an online advertising campaign and
a cross-platform campaign that involves both TV and online plat-
forms, and provide practical guideline to assess advertising strategy
on one or more platforms. Our extensive experiments provide the
causal impact of ad with different frequencies from one or more
platforms, and further show that the ad frequency usually has a
treatment effect cap that could have been over-estimated by naive
estimations. Hence it is important for the ad providers to make
appropriate adjustment for the number of the ads delivered to the
users.

Our framework is not limited to online advertising, but is also
applicable to other tasks (e.g., social science, and user engagement
studies) where causal impact of general treatments (e.g., UI design,
content format, ad context, and etc.) needs to be measured with
observational data.

2. METHODOLOGY
In this section we briefly review the causal inference theory [21],

and then propose our tree-based causal inference framework.
We define the set of potential treatment values to be T , and hence

each value t ∈ T indicates a specific treatment, which can be uni-
or multi-dimentional. For a specific user, the treatment is a ran-
dom variable T, which is supported on T . Similarly we define the
potential outcome associated with a specific treatment t as Y (t),
which is the random variable mapping the given treatment t to a
potential outcome supported on the set of potential outcomes Y .
Since the treatment can be uni- or multi-dimensional, we use the
boldface T and t to indicate a multivariate treatment variable and T
and t to indicate a univariate treatment variable. In this paper, all
the methodologies designed for multivariate treatment T may also
be applied to univariate treatment T . In the binary treatment case,
T = {0,1} with 1 indicates, for example, ad exposure and 0 indi-
cates no ad exposure. In general, T could be multivariate and of
a mixture of categorical and continuous variables. Typically, one
would like to evaluate the effect of treatment t on the outcome Y ,
removing the confounding effect of X.

For each user, indexed by i = 1,2, ...,N, we observe a vector of
pretreatment covariates (i.e., user characteristics) Xi of length p, a
treatment Ti, and an univariate outcome Yi (e.g., purchase indica-
tor) corresponding to the treatment received.

2.1 Primer for Causal Inference
In the causal inference framework for treatment impact measure-

ment, two standard assumptions are usually made in order to unbi-
asedly evaluate the effect of the treatment [21, 30].

Assumption 1: Stable unit treatment value assumption. "The
potential outcome for one unit should be unaffected by the particu-
lar assignment of treatments to the other units" [12]. This assump-
tion allows us to model the outcome of one subject independent of
another subject’s treatment status, given the covariates.

Assumption 2: Strong ignorability of treatment assignment
(also called ‘Unconfoundedness’). Given the covariates X, the dis-
tribution of treatment assignment T is independent of the potential
outcome Y (t) for all t ∈ T . This assumption allows us to model
the treatment with respect to the covariates, independent of the out-
come. It means all the user characteristics that are related to both
the treatment assignment and the outcome have been collected.

When making causal inference, the primary interest is the distri-
bution p(Y (t)|X) for each t ∈ T and fixed X, or its average over
the population p(Y (t)) =

∫
X p(Y (t)|X)p(X)dX. Due to the fact

that in observational studies we observe only one of the potential
outcome Y (T= t)∈Y for each t∈ T , we must condition on the ob-
served treatment assignment in order to obtain p(Y (t)). As pointed



out in [21], a solution is to condition on the observed covariates.
According to Assumption 2, we have p(Y (t)|T = t,X) = p(T =
t|Y (t),X)p(Y (t)|X)/p(T = t|X) = p(Y (t)|X), and hence

p(Y (t)) =
∫

X
p(Y (t)|T = t,X)p(X)dX. (1)

In principle, one can model p(Y (t)|T = t,X) directly, but ex-
perience shows that the result can be strongly biased if the rela-
tionship between T and X is omitted or mis-specified [21]. When
the observed covariates X is low-dimensional, one way to avoid
this bias is to classify subjects according to X and estimate (1) via
the weighted average over X. However as the dimension of X in-
creases, exact sub-classification according to covariates becomes
computationally infeasible.

To address the high-dimensionality issue of X, Rosenbaum and
Rubin [30] introduced the balancing score to summarize the infor-
mation required to balance the distribution of covariates and pro-
posed the propensity score method for the binary treatment prob-
lem. The balancing score is the random variable such that condi-
tioned on it, the observed covariates and the treatment assignment
are independent. By sub-classifying the balancing score, we can
obtain a valid causal inference of the treatment effect. The basic
algorithm is summarized in Table 1. Later on, Imai and van Dyk
[21] introduced the propensity function to generalize the propen-
sity score method to general treatments. Specifically, the propen-
sity function e(X) is defined as the conditional density of the treat-
ment given the observed covariates, i.e., e(X) = p(T|X). It was
shown that this propensity function is a balancing score, that is,
p(T|X) = p(T|e(X)). Hence we can obtain p(Y (t)) in (1) as

p(Y (t)) =
∫

e(X)
p(Y (t)|T = t,e(X))p(e(X))de(X). (2)

To compute the integral in (2), Imai and van Dyk [21] assumed
that there existed a unique finite-dimensional parameter θ such
that the propensity function e(X) depended on X only through
θ(X). For example, when the conditional distribution of T|X ∼
N(XT β,Σ) with some parameter β, the propensity function e(X) is
the Gaussian density function which can be fully characterized by
θ(X) = XT β. In this case, θ is also a balancing score, and hence
we can obtain p(Y (t)) in (2) as

p(Y (t)) =
∫

θ
p(Y (t)|T = t,θ)p(θ)dθ. (3)

This integral can be approximated by classifying the subjects
into several sub-classes with similar value of θ, estimate the treat-
ment effect within each sub-class, and then average the estimators
from each sub-class. Usually θ has a much smaller dimension than
X , hence this strategy tackles the high dimensionality issue of the
covariates in (1) [21].

Table 1: Algorithm of Propensity Score Method with Sub-classification

Input: Yi, Xi, treatment Ti for i = 1,2, ...N.
Output: Estimated treatment effect for t.
Step 1: Find a balancing score Bi for each subject such that Ti ⊥

Xi|Bi.
Step 2: Sub-classify the subjects with similar balance score Bi into

S sub-classes.
Step 3: Within each sub-class s, calculate the number of subjects Ns

and estimate the treatment effect Rs(t) for each treatment t.
Step 4: Estimate the population treatment effect as a weighted aver-

age of Rs(t), where the weight is proportional to Ns.

2.2 Robust Tree-Based Causal Inference
The approach in (3) is vulnerable to the model misspecification

when assuming the parametric form of T|X, and the final treatment

effect estimation is sensitive to the number of sub-classes and the
strategy of sub-classification [19]. A larger number of sub-classes
leads to a more accurate estimation of the integral in (3) but in-
evitably implies a less accurate estimation of the inner conditional
distribution p(Y (t)|T = t,θ) due to limited observations in each
sub-class. Furthermore, although equal-frequency strategy is gen-
erally used to form the sub-classes [21, 32], experiments showed
that this strategy often leads to highly unable estimators for the ex-
treme sub-classes [19]. Therefore, it is in great demand to introduce
a model free method which can avoid the choice of the number of
sub-classes and the strategy of sub-classification. To overcome the
aforementioned issues, we propose a tree-based causal inference
method for general treatment problem.

Recall that we can obtain the unbiased estimation of treatment
effect by (2). Naturally we can approximate this integral by clas-
sifying the subjects into several sub-classes with similar value of
e(X), and then average the estimators from each sub-class. We uti-
lize the tree structure to model e(X) nonparametrically and classify
the users automatically (Section 2.2.2). The number of sub-classes
is also determined by the tree model, and hence we avoid arbitrary
selection of the number of sub-classes. Compared to the previous
methods, the tree-based model is a nonparametric approach, which
requires fewer assumptions. We also propose a bootstrapping ag-
gregated approach to further boost the performance (Section 2.2.2).

2.2.1 Tree-Based Causal Inference
As discussed above, the unbiased treatment estimation p(Y (t))=∫

e(X) p(Y (t)|T = t,e(X))p(e(X))de(X) can be approximated by
classifying users with similar e(X), and then one can obtain un-
biased estimation of the treatment effect with each sub-class. The
tree-based structure naturally partitions the given predictor space
into disjoint groups, and hence is ideal to automize the classifica-
tion and the rest of the causal inference calculation.

Specifically, we hereby adopt a tree-structure on modeling
p(T|X) with the treatment T as the dependent variable and the co-
variates X as the independent variables, which builds the tree in
the way that the distribution of treatment becomes homogeneous
within each partitioned sub-class. In other words, through tree-
based method, we automatically obtain the benefit of the two-step
sub-classification method (Table 1), which first models T|X to find
a balancing score and then partitions the subjects based on the value
of the balancing score.

We then estimate the treatment effect within each leaf node, and
take the weighted average across all the leaf nodes as the final es-
timation. The detailed algorithm is described in Table 2. In Figure
8 and Table 7 of Section 4.2, we employ an example to illustrate
each step of this algorithm.

Table 2: Algorithm of (Single) Tree-Based Model

Input: Yi, Xi, treatment Ti for i = 1,2, ...N.
Output: Estimated treatment effect for t.
Step 1: Fit a tree-based model with dependent variable Ti and in-

dependent variable Xi.
Step 2: Within each leaf node s, calculate the number of subjects

Ns and estimate the treatment effect Rs(t) for each treat-
ment t.

Step 3: Calculate the final treatment effect as in (4).

Note that the method to estimate the treatment effect Rs in step
2 may vary with great flexibility. For example, when the treatment
T is discrete, a straightforward nonparametric way to estimate the
treatment effect in each node s is to compute the average of out-
come Y corresponding to various treatments T, and then subtract
the averaged outcome of a baseline treatment. For instance, for a



bivariate and binary treatment T=(T1,T2)
T with (T1,T2)∈ {0,1}2,

within each node s, we can estimate the effect of treatment t as
Rs(t) = Ȳ (t)− Ȳ (t0) with t0 = (0,0)T as the baseline treatment,
where Ȳ (·) refers to the averaged outcome. When the treatment T
is continuous, one could choose to fit any proper nonparametric or
parametric model for Y |(T,X) within each sub-class s. The choice
of the specific model to fit within leaf node s is not the focus of this
paper, but our algorithm is flexible that any proper model can be
utilized.

Under the two standard assumptions as in Section 2.1, we prove
that the proposed tree-based causal inference estimation is unbi-
ased.

THEOREM 1. Under Assumptions 1-2 and the condition that
the subjects in each leaf node have a homogeneous density of T,
the effect of treatment t is equal to the expected outcome corre-
sponding to treatment t averaged over the leaf node in the proposed
tree-based method.

Proof of Theorem 1: The condition that in each leaf node the sub-
jects have a homogeneous density of T implies that conditioning
on the leaf node is equivalent to conditioning on e(X) = p(T|X).
Therefore, the treatment effect induced from the proposed algo-
rithm is Ee(X) {E[Y (t)|T = t,e(X)]} for any given treatment t. Next
we will show that this equals E[Y (t)]. According to the assump-
tions 1-2 and the fact that e(X) is a balancing score, we have

p(Y (t),T,X|e(X)) = p(Y (t),X|e(X))p(T|e(X)).

Integrating both sides with respect to X leads to the conclusion
that Y (t)⊥⊥ T|e(X). Therefore, for any t ∈ T , we have E[Y (t)] =
Ee(X) {E[Y (t)|e(X)]}= Ee(X) {E[Y (t)|T = t,e(X)]}. This ends the
proof of Theorem 1. !

We comment that the assumption of a homogeneous density of T
within each leaf node is standard. Similar condition has also been
imposed in Theorem 5 of [36]. An intuitive explanation is that the
tree automatically seeks the partition such that the predictor space
is the most separable and hence the distribution of T gets more and
more homogeneous within each leaf node as the tree grows [36].

In our algorithm, we follow the CART [7] guideline to construct
the single tree in Step 1 of Table 2. The tuning parameters are cho-
sen based on a 10-fold cross validation. After the tree construction,
within each leaf node s, we estimate Rs(t) and then estimate the
final averaged treatment effect (ATE) as

ÂTE = ∑
s

Ns
N

{Rs(t)−Rs(t0)} , (4)

where t0 is the baseline treatment.

2.2.2 Bagged Tree-Based Causal Inference
A single tree suffers from the instability issue since a small per-

turbation to the samples may lead to tremendous changes in the
constructed tree [7]. The bootstrap aggregating (bagging) intro-
duced by Breiman [6] is frequently applied to enhance the perfor-
mance of non-robust methods by reducing the variance of a predic-
tor . We here adopt the bagging strategy to improve the robustness
of our framework.

In the bagged tree-based causal inference, we repeatedly gen-
erate bootstrap samples (i.e., a set of random samples drawn with
replacement from the dataset), estimate the treatment effect based
on the samples, and calculate the final results by averaging the re-
sults from the bootstrap sample sets at the end. The detailed imple-
mentation is in Table 3. The theoretical justification of this bagged
tree-based causal inference model is due to the unbiased estimation

Table 3: Algorithm of Bagged Tree-Based Model

Input: Yi, Xi, treatment Ti for i = 1,2, ...N.
Output: Estimated treatment effect for t.
Step 1: Construct a bootstrap sample D∗ according to the empirical

distribution of the observations.
Step 2: Compute the bootstrapped treatment effect estimator ÂTE

∗

based on D∗ via Table 2.
Step 3: Repeat Steps 1-2 B times and output the final estimator

ÂTEB in (5) and SD in (6).

of single tree-based method in Theorem 1 and the consistency of
the bagging method for CART shown by Bühlmann and Yu [8].

Note that our bagged causal inference model is able to establish
the confidence interval of the estimated treatment effect. In Step 3
of Table 3, we can calculate the bootstrapped mean ÂTEB and stan-
dard deviation SD of ÂTEB according to B bootstrapped treatment
effect estimators in Step 2. Specifically,

ÂTEB =
1
B

B

∑
b=1

ÂTE
∗(b)

, (5)

SD =
1√
B

(
1

B−1

B

∑
b=1

(
ÂTE

∗(b)
− ÂTEB

)2
)1/2

, (6)

where b is the bootstrap sample set index. If the bootstrapped es-
timators follow a normal distribution, we can obtain the 95% con-
fidence interval of ATE as (ÂTEB −1.96∗SD, ÂTEB +1.96∗SD).

Otherwise, the middle 95% quantile of ÂTE
∗(1)

, . . . , ÂTE
∗(B)

could
be used.

Another advantage of the bagged model is that flexible subsam-
pling strategies can be incorporated into robust causal inference
framework, which is useful, even necessary when addressing some
practical problems. For instance, modern online ad datasets typi-
cally suffer from the severely imbalanced outcome, e.g., most users
are not exposed to any ad. Our robust causal inference framework
is able to employ the subsampling and backscaling strategy as de-
scribed in [38]. Specifically, in the subsampling step, we sample
the exposed users with a higher probability than the non-exposed
users and estimate the treatment effect via our framework based on
the sample dataset. The success rates calculated from the subsam-
ples are then back-scaled to the whole population level according
to the sampling rates. This method has been examined carefully
in [38] and shown to achieve substantial improvement of out-of-
sample predictions.

2.2.3 Summary
The utilization of the tree-based structures fully automizes the

causal inference pipeline in a nonparametric way without pre-
specified assumptions for outcome or treatment models, and the
bagging further improves the robustness. To sum up, we visualize
the approach with the following roadmap:

1. In order to obtain a valid causal inference of the treatment,
we need to account for the confounding impact of user fea-
tures (Figure 1).

2. Employ a tree model to estimate the propensity function
(Figure 2). The tree model automatically classifies the users
into groups within which the distribution of treatment is ho-
mogeneous.

3. Conditioned on each propensity function, the treatment and
user features are independent. Therefore, within each tree
leaf node, the impact of the treatment on the outcome is
the real treatment effect (Figure 3). We then estimate the
population-level treatment effect by a weighted average of
the estimators from each leaf node.
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Figure 1: Confounding effect of user features.
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Figure 2: Estimate the propensity function via the proposed tree model.
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Figure 3: Obtain causal effect by conditioning on the propensity function
estimated from each tree leaf node.

3. SIMULATION STUDY
To better understand our framework, we use two simulated ex-

amples to asses our tree-based causal inference framework and
compare it with direct modeling methods. The simulation results
show that, when there are confounding covariates contributed to
both treatment assignments and outcome, which is common in ob-
servational studies, direct modeling methods without propensity
function adjustment lead to severe biases, while our tree-based
framework shows no significant biases and significantly improves
the accuracy and robustness of the treatment impact measurement.

3.1 Without Treatment Effect
In the first simulation, the treatments have no causal effect on

the outcome and the superficial correlation between treatments and
outcome is due to the confounding effects of the covariates.

We set the 5-dimensional covariate X as the exponential values
of five randomly generated standard normal variables. This gener-
ation mimics our real data where the covariates are all nonnegative.
We then generate two binary treatments T1,T2 and a binary outcome
Y . This process is summarized as follows.

Z = (Z1, . . . ,Z5)
T ∼ N5(0, I);

X = exp(Z);

Tj ∼ Bernoulli(π j) with logit(π j) = βT
j X for j = 1,2;

Y ∼ Bernoulli(πy) with logit(πy) = βT
y X.

We set the coefficients β1 = (1,−1,−1,−1,1), β2 =
(1,0,−1,−1,1), and βy = (1,−1,−1,−1,0). We choose
these coefficients to ensure that the outcome is roughly balanced.
In the above simulation, the treatment T is not involved in the
generation of Y and there is no treatment effect. The sample size is
fixed as n = 1000.

Table 4: Percentages of mistakenly considering the coefficients of treat-
ments to be different than 0. "T1" and "T2" refer to the treatment T1 and
treatment T2, respectively, and "either" means either the effect of treatment
T1 or that of treatment T2 is overestimated.

Model A Model B
T1 T2 Either T1 T2 Either

11% 9% 20 % 0 0 0

Model A: T1 Model A: T2 Model B: T1 Model B: T2
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Figure 4: P-values for the coefficients of treatments. "Model A: T1"
("Model A: T2") corresponds to the effect of treatment T1 (T2) in Model
A. Similar meanings are used for Model B. When the p-value is less than
0.05 (red line), the corresponding estimated treatment effect is significantly
different from 0.

We compare the direct modeling method and the proposed tree-
based method in fitting the simulation dataset.

1) Model A: Direct Modeling. A linear logistic regression with
dependent variable Y and independent variables (T,X). The treat-
ment impact is measured as the fitted coefficient of T.

2) Model B: Our Proposed Model. The proposed tree-based
method in Table 2. In step 3 of Table 2, within each mode s, we fit
a linear logistic regression for Y with independent variables (T,X).
The treatment impact is captured by the averaged coefficients of T
over all nodes.

We repeat the above generation and inference process 100 times,
and record the number of times that these two methods mistakenly
consider the coefficients of T to be significantly different than 0
under the 95% confidence level. Recall that the true causal impacts
of both treatments are 0. However, as shown in Table 4, the di-
rect modeling approach (Model A) incorrectly discovers the causal
impact of either treatment 20% of the times. On the other hand,
our approach (Model A) always correctly finds that the treatment
impact is not significantly different than 0. This illustrates the ad-
vantage of our model.

Next we plot the p-values of the fitted coefficients for treatments
T1 and T2 in Figure 4. Note that the true coefficients for both treat-
ments are not significantly different from 0 and ideally the p-values
should be larger than 0.05. As shown in Figure 4, Model A over-
estimates the treatment effect as some of their p-values are very
small. Furthermore, it produces a very unstable p-values over the
100 replicates, which hinders its applicability in practice. In con-
trast, Model B delivers very stable and accurate inference results.

Finally, we demonstrate the covariance balance performance of
our tree-based algorithm. Figure 5 plots the absolute values of the
correlations between each treatment and each of the covariates in
Model A and Model B. Due to the propensity function adjustment,
our Model B shows a considerable reduction in the correlation over
Model A. This illustrates why our causal inference model improves
the performance over the directly modeling methods.
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Figure 5: Correlations between two treatments and the covariates in Model
A and Model B. The circle (cross) indicates the correlation with treatment
T1 (T2). Results are from 5 replications.

3.2 With Treatment Effect
In the second simulation, both treatments have real causal effects

on the outcome. Specifically, we generate data as follows.

X1,X2,X3,X4,X5
iid∼ U [0,1];

T1 ∼ Bernoulli(π1) with logit(π1) = 1−X1 −X2;
T2 ∼ Bernoulli(π2) with logit(π2) = 1−2X2 −2X3;
Y ∼ Bernoulli(πy) with logit(πy) =

−2+2T1 −2T2 +2X1 −2X2 +2X3 −2T1X3 +2T2X4.

In this example, covariates X1,X2,X3 are confounders that affect
both treatment T and outcome Y , covariate X4 is an causal effect
modifier, and X5 is a totally irrelevant feature.

In this 2-dimensional treatment example, the true effect of treat-
ment Tj is E[Y (t j)]−E[Y (t0)] with t1 = (1,0)T , t2 = (0,1)T , and
t0 = (0,0)T . Simple calculation implies that the true treatment ef-
fects of T1 and T2 are 0.196 and −0.138, respectively.

We compare two direct modeling methods (Models 1-2 below)
and the proposed tree-based methods (Models 3-4 below) as well
as their bagged versions (Models 5-6 below).

1) Model 1: a naive approach which estimates the treatment ef-
fect of Tj as Ȳ (t j)− Ȳ (t0) for j = 1,2.

2) Model 2: a linear logistic regression with dependent variable
Y and independent variables (T,X).

3) Model 3: the proposed tree-based method in Table 2. In step 3
of Table 2, within each leaf node s, we estimate the treatment effect
of Tj as Ȳ (t j)− Ȳ (t0) for j = 1,2.

4) Model 4: the proposed tree-based method in Table 2. In step 3
of Table 2, within each leaf node s, we fit a linear logistic regression
for Y with independent variables (T,X).

5) Model 5: the bagged version of Model 3.
6) Model 6: the bagged version of Model 4.
To measure the accuracy of the treatment effect estimators, we

compute the absolute difference of the true treatment effect and
the estimated treatment effect of above models. In Figure 6, we
report the sum of errors of both treatments for each model over
100 replications. The standard deviation bar of the errors are also
shown. As demonstrated in Figure 6, our Model 6 achieves the min-
imal error and our tree-based models outperform their counterparts
without propensity function adjustment. Specifically, for the naive
treatment estimation methods, Model 1 has the largest error. After
tree-based propensity function adjustment, Model 3 improves the
estimation accuracy and Model 5 further improves the accuracy via
bagging. For the logistic modeling method, Model 6 outperforms
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Figure 6: Errors of treatment effect estimation in Section 3.2. In the X-axis,
"naive", "logit", "tree", "tree&logit", "bag", and "bag2" refer to Models 1-6,
respectively.

the tree-based logistic method Model 4, while the latter greatly im-
proves the direct logistic method Model 2. To sum up, the tree-
based methods significantly reduce the errors in treatment effect
estimation of the direct methods, and the bagged versions help to
further enhance the performance.

4. REAL APPLICATIONS
In this section we apply the proposed framework on two real

campaigns. The first campaign is from a major telecommunica-
tion company, where we measure the impact of ads with different
frequencies. Hence the treatment is a one-dimensional scalar (Sec-
tion 4.1). The second campaign is from a major auto insurance
company and involves multiple ad exposure across TV and online
platforms (Section 4.2). We measure the frequency impact of the
ads from both platforms, as well as the synthetic impact of the two
platforms. In both campaigns, the success action is defined as an
online quote.

Note that our framework applies to general ad treatments. The
two applications serve as examples to show the efficacy of the
methodology, and there is not obvious obstacle to apply the frame-
work to measure treatments including other factors of ad strategies.

4.1 Single Treatment Study
This dataset contains about 0.7 millions users (0.5 million non-

exposed users and 0.2 million exposed users) collected during a
3-day campaign3. The overall success rate, i.e., the percentage of
users making a success action, is about 2.4%. In this example, the
ad treatment is the frequency of ad exposures, which is continu-
ous and one-dimensional. The maximal number of ad frequency
is 331, while 95% of the frequency are less than 17. This data
contains 1010 user features, including the demographic informa-
tion, online activities, and ad exposure information. Among these
features, some are potential confounding variables related to both
treatment and outcome. For example, a user with more active on-
line behaviors tends to see more ads and simultaneously has a larger
chance to make a success action. In this application, we aim to mea-
sure the causal impact of ad exposure frequency, removing the bias
due to user characteristics.

To illustrate how our tree model builds a homogeneous treatment
density within each node, we compare the variance of the treatment

3The reported dataset and results are deliberately incomplete and
subject to anonymization, and thus do not necessarily reflect the
real portfolio at any particular time.



before and after the tree adjustment. In the original dataset, the
variance of the treatment is 110.14. After utilizing our tree model,
the weighted variance reduces to 79.08, which has a 28% improve-
ment over the original variance.

We next illustrate the frequency impact on the success rates. Ac-
cording to the algorithm in Section 2, within each leaf node, there
could be various ways to estimate the treatment impact via control-
ling the confounding effect of the covariates on treatments. This
choice of modeling method within each node is not the focus of
this paper. In this section, for illustration purpose, we utilized a
straight-forward estimation method. Specifically, we compare 1)
a naive approach which computes the plain success rates corre-
sponding to the various ad frequencies and 2) an adjusted approach
via our tree-based causal inference model where the correspond-
ing success rates are computed within each node and then averaged
with weights proportional to the node sizes as in (4).

The naive and adjusted estimators of the treatment impact are
shown in Figure 7. The general trend of the naive estimation indi-
cates that success rate increases as the number of ad exposure in-
creases. However, interestingly, our method suggests that the suc-
cess rate increases at the beginning, then decreases, and finally sta-
bilizes. Specifically, the maximal success rate (0.055) is obtained
when the users are shown 12 ads, and then success rate stabilizes
around 0.045. This agrees with the findings in [24] that ad fre-
quency has nearly linear increasing effect at the beginning and has
nearly constant effect for users eligible to see more ads. The one
standard deviation bar shows that the maximal success rate at 12
ads is significant larger than others, where the standard deviations
get larger as the ad frequency increases due to less samples. To
sum up, our result advises that 12 ads are sufficient to maximize
the success rate in this campaign and there is little demand for this
telecommunication company to deliver more than 12 ads to the el-
igible users.
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Figure 7: Success rates and their corresponding one standard deviation bars
of the naive and adjusted models. X-axis is the frequency of ad exposure.

4.2 Cross-Platform Study
In the cross-platform study from an auto insurance company, the

treatment is a two-dimensional vector, containing the numbers of
ad exposures from TV and online platform, separately. We measure
the impact of TV and online ads together, and hence address the
synthetic impact of ad exposure from both platforms.

The dataset contains about 37 million users with 23 million non-
exposed users and 14 million exposed users during a 30-day cam-
paign. The original data are extremely imbalanced since the suc-
cess rates are only 0.204% in the non-exposed group and 0.336%
in the exposed group. To deal with this imbalance issue, we em-
ploy the subsampling and backscaling proposal in Section 2.2.2,
based on which the success rates of non-exposed group and ex-

posed group in the sample increase to 16.9% and 16.7%, respec-
tively. The summary statistics of the original dataset and one sam-
ple are shown in Tables 5.

Table 5: Sizes of all online-tv data and one of its sample. "success" or
"no success" refers to the size of users who make or do not make a success
action, respectively. "M" refers to million.

Non-exposed Exposed Total
Success No Success Success No Success

All 46472 23 M 48082 14 M 37 M
Sample 1784 8757 1189 3270 15000

The features include the demographic information, personal in-
terest, and online and TV activities. A sample of the features and
their corresponding values are shown in Table 6 for illustration.
Specifically, the demographic information consists of the user’s
gender, age, etc.; the personal interest measures how a user is inter-
ested in a specific category, e.g., auto; the online activity captures
how often a user visits a particular website and the ad exposures
to other companies; and the TV activity collects the TV watching
information and the TV ad exposures. In this campaign, there are
2542 features in total.

Table 6: Sample features in the cross-platform study

Feature Value
Demographic Info and Interest

Demographic | Gender | Male 0
Demographic | Gender | Female 1
Demographic| Age 27
...
Interest | Celebrities 0.01
Interest | Auto | New 0.23
Interest | Auto | Used 0.65
...

Online Network Activities
Site Visitation | Finance 67.4
Site Visitation | Movies 1.3
Site Visitation | Sports 0.0
...
Ad Impression | Auto | Company 1 7.24
Ad Impression | Insurance | Company 2 9.43
...

TV Activities
TV Program Viewership | Movies 2.5
TV Program Viewership | Sports 53.1
...
TV Ad Impression 132.7
...

To demonstrate each step of our algorithm in Table 2, we show
a single tree fitted by treating the two-dimensional treatment as the
dependent variable and the covariates as the independent variables
in Figure 8. In this single tree, nodes 4, 5, 8, 9, 10, and 11 are the
leaf nodes.

Within each leaf node in Figure 8, we calculate the success rates
of non-exposed group and the exposed group for a given treatment,
and hence the treatment effect is estimated as the difference of the
two success rates. Then the population level treatment effect is
estimated as the weighted average of the results from each node
with weight proportional to the node sizes. We take the treatment
with 1 tv ad exposure and 2 online ad exposures as an example
to illustrate the estimation process. Table 7 shows the results in
estimating its treatment effect.

To compare the results from naive estimation without propensity
adjustment and the causal inference estimation with the proposed
framework, we first show the naive estimator for the ad frequency
impact by simply computing the averaged outcomes corresponding
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Figure 8: Tree of causal inference model in the cross-platform study.

Table 7: Treatment effect of the case with 1 tv ad exposure and 2 online ad
exposure in the cross-platform study. The success rates, treatment effects
(TE), and averaged treatment effect (ATE) are given in 10−3.

Node Non-exposed Treatment TE ATE
Index Size Success Rate Success Rate
[4] 7248 1.14 3.84 2.70
[5] 4311 0.85 1.45 0.60
[8] 1848 0.56 0.66 0.10 1.86
[9] 242 0.42 0 −0.42
[10] 1115 0.92 6.70 5.78
[11] 236 3.32 0 −3.32

to various treatments. We group both TV and online ad frequen-
cies as 0, 1, 2, 3 ,4, 5, 6-10, and 11-15 buckets. We employ this
grouping scheme since the frequency decreases sharply when it is
larger than 5 and most of the frequency is less than 15. As shown in
Figure 9, the naive estimator implies that the highest success rate is
obtained when the users are shown 11-15 TV ads and 11-15 online
ads. In addition, it shows that generally the ad effects get larger
as the number of ad exposures increases for both TV and online
platforms. However, we will show that this plausible conclusion is
biased and the superficial treatment effect is affected by the con-
founding effect of the user features.

By controlling the confounding effects of the covariates, our
tree-based casual inference estimator is able to generate an unbi-
ased estimator. We employed our bagging tree-based algorithm
with B=100 according to Table 3. As illustrated in Figure 10, the
largest success rate is obtained when the users are shown 5 online
ads and 5 TV ads. Furthermore, we find that the online ad effect
is marginally larger than the TV ad by comparing the success rate
of 0 TV ad exposure (first column in Figure 10) with that of 0 on-
line ad exposure (first row in Figure 10). This suggests that users
generally has a larger chance to conduct quotes on the insurance
company website when they are shown online ads instead of the
TV ads. Finally, similar to the discovery in Section 4.1, both the
online and TV ad effects will increase to a maximal value and then
decrease as the users are shown more ads. Therefore, it is crucial
for the ad providers to make appropriate adjustment based on the
number and type of the ads the users have been exposed to.

Furthermore, we employ the bootstrapping approach to estimate
the standard deviation of the ATE estimator based on (6). Figure
11 shows the top five highest success rates as well as their corre-
sponding one standard deviation bars. Clearly, the combination of
5 online ads and 5 TV ads is shown to achieve a significantly larger
success rate than other combinations.

In order to illustrate the flexibility of our tree-based causal in-
ference algorithm, in contrast to the above nonparametric method
applied within each leaf node of the constructed tree, we fit a sparse
logistic regression [18] with the success as the binary outcome, and
the ad exposures from the two platforms and their interaction term
as well as the user features as the independent variables. The tuning
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Figure 9: Success rates of naive estimator. The rows are the online ad
frequency and the columns are the TV ad frequency
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Figure 10: Success rates of tree-based causal inference estimator.

parameter λ in the sparse logistic regression model is selected via
cross validation [16]. The causality coefficients of the ad exposure
from online, TV and interaction are 0.066, −0.001, and −0.0001
with the standard deviations 0.0393, 0.0183, and 0.0005. This en-
sures that online ad exposure has relatively positive effect on the
success rate while the TV ad exposure has no significant effect.
Hence the treatment effect is dominated by the online ad exposures,
which is consistent with our findings with the above nonparametric
method.

4.3 Model Validation
We have proved that the proposed causal inference framework

provides an unbiased estimation of the treatment effect in Section
2, and verified it with several simulations in Section 3. Here we fur-
ther validate our tree-based causal inference model with the cross-
platform analysis in Section 4.2 by showing the covariate balanc-
ing effect in real data. Following [21] we first normalized each
covariate and then regress it on both the online and TV treatments
via the Gaussian linear regression. We record the p-values corre-
sponding to the t-statistics for the coefficients of the treatments in
each regression. As shown in Figure 12, the lack of balance is ev-
ident in the original data since most of the coefficients of the TV
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Figure 11: Top 5 success rates and their one standard deviation bars ac-
cording to our tree-based causal inference estimator. In the X-axis, label
"o=5,t=5" refers to the combination of 5 online ad exposures and 5 TV ad
exposures. Similar meanings for other labels.

treatment (before: T2) are significantly different from 0. There-
fore, without controlling the balance of the covariates the direct
modeling approaches may lead to severe biases in the treatment ef-
fect estimations [30]. After adjusting the propensity function via
our tree-based method, the percentages of nonzero coefficients of
the online and TV treatments reduce from 13.3%, 86.7% to 0 and
6.2%, respectively. Hence our approach successfully balances the
covariates and leads to more accurate estimations.
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Figure 12: P-values of coefficients by regressing X on T. The red line is the
baseline 0.05. "before.T1" ("before.T2") is the box plot of the p-values for
the coefficient of online (TV) treatment before adjustment; "after.T1" ("af-
ter.T2") is the corresponding p-values after applying our tree-based model.

5. RELATED WORK
In this section we briefly review three folds of related work: 1)

the experiment-based measurement, 2) the propensity-based causal
inference that focuses on binary treatments, and 3) general treat-
ment causal inference. The first line of work serves as the gold
standard, but meets challenges in practice. We link the second and
third lines of literatures with our work and reveal the novelty of our
framework.

The experimental approach is the gold standard to estimate treat-
ment effect. When the randomized experiments are available,
various regression approaches by regressing the outcome on the
treatments can be employed to compute the ad effectiveness from
causality perspective (i.e., how the ad treatment causes changes in
the outcomes) [3, 27]. However, in reality, the cost and difficulty
of successfully performing fully randomized experiments are very
high [10, 35], and some experiments may not even be feasible for
complex treatments. To avoid the difficulties in experimental ap-
proaches, direct comparison and regression-based approaches have
been utilized in observational studies. However, direct comparison
of the outcomes from different treatment groups in the observa-

tional data can lead to severe overestimation of the effects of ad-
vertising [1, 27], and the regression-based approaches rely on the
pre-specified functional form of the model and are vulnerable to
model misspecification [29, 32, 34]. In addition, when the out-
come is binary, prior research suggested that at least 8 events should
be observed for every covariate in the regression model [9], which
prevents its application in practice [2]. Therefore, an unbiased and
flexible model is in demand in the observational study.

The causal inference methodologies are able to offer an unbi-
ased estimation of the ad treatment effect from observational data
and hence fundamentally overcome the disadvantages of experi-
ments and direct observational studies. Most of the previous causal
inference methodologies focus on binary or categorial treatments.
The causal inference framework for the observational studies with
a binary treatment was original proposed by Rosenbaum and Ru-
bin [30]. They first introduced the concept of propensity score and
the inverse propensity score weighting estimation method. This
method is also generalized to multi-category treatments [31] and
ordinal treatments [23, 28], which have been widespread in various
fields, including health care [4], social science [26], politics [20],
online behavior study [14]. In online advertising market, causal
inference methods have been developed to estimate the causal ef-
fects of a binary treatment. For example, [10] applied the causal
analysis to industrial advertising data of moderate size, [35] ex-
plored the benefits of estimating several other parameters of inter-
est via the targeted maximum likelihood estimation, and [13] used
causal inference for a multi-attribution problem. Yet, these meth-
ods were typically applied to single treatment case with small to
medium user group and moderate success rates. Recently, [38] ap-
plied the inverse propensity weighting causal inference method for
the large scale online advertising data. Nevertheless, their work
mainly focused on the univariate treatment scenarios and was not
well suited for general and complex treatment measurements. Be-
sides propensity-based causal inference methodologies, structural
equation model [5], inference based on decomposition of the joint
distribution of the treatment and response variables [22, 11], and
before-and-after studies [39] are also used for causal inference from
different points of view.

To expand the scope of causal inference from a binary treatment
to a general treatment, a propensity function-based framework is
proposed [21]. However, in practice, it is a non-trivial task to es-
timate this propensity function and there is few investigation on
how to choose the number of sub-classes in grouping the users with
similar propensity functions. In reality, the treatment effect estima-
tion could be sensitive to the choice of the sub-class size. Another
causal inference framework is the causal inference tree (CIT) in the
machine learning community [36]. It models both the treatment
and outcome simultaneously with respect to the user characteris-
tics by imposing a parametric assumption on the joint density of
treatment and outcome.

Our tree-based causal inference framework is substantially dif-
ferent with all the previous work. Our framework is a nonparamet-
ric approach that does not require specific assumptions of the joint
or separated density functions of ad treatment and outcome as in
[36]. Furthermore, it automatically groups subjects (i.e., users in
online advertising cases) within the same leaf node of the tree, and
hence avoid the arbitrary specification of number of classes as in
[21]. It is fully general and flexible that the treatment can be multi-
dimensional combining discrete and/or continuous treatment fac-
tors, and it is computationally more efficient than regression-based
propensity score methods. Most importantly, we prove that our
treatment effect estimation is unbiased under weak assumptions.



6. CONCLUSION AND DISCUSSION
This paper proposes a robust tree-based causal inference frame-

work for complex treatment measurement. Our framework uti-
lizes the tree-based structure embedded in a bagging procedure to
achieve efficient computation, flexible modeling, unbiased estima-
tion and robust inference. It is able to provide practical guideline to
assess advertising strategy. To show the efficacy of our framework,
we apply it to two real world applications—an online advertising
campaign and a cross-platform campaign. Our framework success-
fully provides the causal impact of ads with different frequencies
and further shows that the ad frequency has a treatment effect cap,
which is usually over-estimated by naive estimation. Hence it is
important for the ad providers to make appropriate adjustment for
ad frequency to reach optimal results.

In this paper, the proposed methodology solves the problem
of general treatment measurement. However, in some extreme
cases that the treatments and confounding features are both high-
dimensional and sparse, and direct application of the methodology
is computationally infeasible. For the future work, we would like
to design a more sophisticated way for modeling p(T|X). Another
interesting direction is to use the causal inference framework to
online media layout optimization problem [37] and effectiveness
measurement of user engagement strategies [15].

7. REFERENCES
[1] M. Abraham. The off-line impact of online ads. Harvard Business

Review, 86(4): 28, 2008.
[2] P. Austin. An introduction to propensity score methods for reducing

the effects of confounding in observational studies. Multivariate
Behavioral Research, 46:399–424, 2011.

[3] J. Barajas, J. Kwon, R. Akella, A. Flores, M. Holtan, and V. Andrei.
Marketing campaign evaluation in targeted display advertising. In
Proceedings of the Sixth International Workshop on Data Mining for
Online Advertising and Internet Economy, page 5. ACM, 2012.

[4] A. Basu, D. Polsky, and W. G. Manning. Use of propensity scores in
non-linear response models: the case for health care expenditures.
Technical report, National Bureau of Economic Research, 2008.

[5] L. Bottou, J. Peters, J. Quiñonero-Candela, D. X. Charles, D. M.
Chickering, E. Portugaly, D. Ray, P. Simard, and E. Snelson.
Counterfactual reasoning and learning systems: the example of
computational advertising. The Journal of Machine Learning
Research, 14(1):3207–3260, 2013.

[6] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
1996.

[7] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen.
Classification and Regression Trees. Chapman & Hall/CRC, 1984.

[8] P. Bühlmann and B. Yu. Analyzing bagging. The Annals of Statistics,
30(4):927–961, 2002.

[9] M. Cepeda, R. Boston, J. Farrar, and B. Strom. Comparison of
logistic regression versus propensity score when the number of
events is low and there are multiple confounders. American Journal
of Epidemiology, 158:280–287, 2003.

[10] D. Chan, R. Ge, O. Gershony, T. Hesterberg, and D. Lambert.
Evaluating online ad campaigns in a pipeline: causal models at scale.
In Proceedings of SIGKDD, pages 7–16. ACM, 2010.

[11] Z. Chen, K. Zhang, L. Chan, and B. Schölkopf. Causal discovery via
reproducing kernel hilbert space embeddings. Neural computation,
pages 1–34, 2014.

[12] D. R. Cox. Planning of experiments. Wiley, 1958.
[13] B. Dalessandro, C. Perlich, O. Stitelman, and F. Provost. Causally

motivated attribution for online advertising. In Proceedings of the
Sixth International Workshop on Data Mining for Online Advertising
and Internet Economy, page 7. ACM, 2012.

[14] A. Dasgupta, K. Punera, J. M. Rao, X. Wang, J. Rao, and X.-J. Wang.
Impact of spam exposure on user engagement. In USENIX Security,
2012.

[15] G. Dupret and M. Lalmas. Absence time and user engagement:
evaluating ranking functions. In Proceedings of WSDM. ACM, 2013.

[16] J. Friedman, T. Hastie, and R. Tibshirani. glmnet: Lasso and
elastic-net regularized generalized linear models. R package version
1.4., 2009.

[17] G. Harrison and J. A. List. Field experiments. Journal of Economic
Literature, 27:1013–1059, 2004.

[18] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, 2009.

[19] K. Hullsiek and T. Louis. Propensity score modeling strategies for the
causal analysis of observational data. Biostatistics, 2:179–193, 2002.

[20] K. Imai. Do get-out-the-vote calls reduce turnout? the importance of
statistical methods for field experiments. American Political Science
Review, 99(2):283–300, 2005.

[21] K. Imai and D. A. Van Dyk. Causal inference with general treatment
regimes. Journal of the American Statistical Association, 99(467),
2004.

[22] D. Janzing, J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler,
P. Daniušis, B. Steudel, and B. Schölkopf. Information-geometric
approach to inferring causal directions. Artificial Intelligence,
182:1–31, 2012.

[23] M. M. Joffe and P. R. Rosenbaum. Invited commentary: propensity
scores. American Journal of Epidemiology, 150(4):327–333, 1999.

[24] G. A. Johnson, R. A. Lewis, and D. H. Reiley. Add more ads?
experimentally measuring incremental purchases due to increased
frequency of online display advertising. Working Paper, 2013.

[25] R. Kohav and R. Longbotham. Unexpected results in online
controlled experiments. SIGKDD Explorations, 12(2), 2010.

[26] M. Lechner. Earnings and employment effects of continuous
gff-the-job training in east germany after unification. Journal of
Business & Economic Statistics, 17(1):74–90, 1999.

[27] R. A. Lewis, J. M. Rao, and D. H. Reiley. Here, there, and
everywhere: correlated online behaviors can lead to overestimates of
the effects of advertising. In Proceedings of WWW, pages 157–166.
ACM, 2011.

[28] B. Lu, E. Zanutto, R. Hornik, and P. R. Rosenbaum. Matching with
doses in an observational study of a media campaign against drug
abuse. Journal of the American Statistical Association,
96(456):1245–1253, 2001.

[29] S. Perkins, W. Tu, M. Underhill, X. Zhou, and M. Murray. The use of
propensity scores in pharmacoepidemiologic research.
Pharmacoepidemiology and Drug Safety, 9:93–101, 2000.

[30] P. R. Rosenbaum and D. B. Rubin. The central role of the propensity
score in observational studies for causal effects. Biometrika,
70(1):41–55, 1983.

[31] P. R. Rosenbaum and D. B. Rubin. The central role of the propensity
score in observational studies for causal effects. Biometrika,
70(1):41–55, 1983.

[32] P. R. Rosenbaum and D. B. Rubin. Reducing bias in observational
studies using subclassification on the propensity score. Journal of the
American Statistical Association, 79(387):516–524, 1984.

[33] G. Rosenkrans. The creativeness & effectiveness of online interactive
rich media advertising. Journal of Interactive Advertising,
9(2):18–31, 2009.

[34] D. Rubin. Estimating causal effects from large data sets using
propensity scores. Annals of Internal Medicine, 127:757–763, 1997.

[35] O. Stitelman, B. Dalessandro, C. Perlich, and F. Provost. Estimating
the effect of online display advertising on browser conversion. Data
Mining and Audience Intelligence for Advertising, 8, 2011.

[36] X. Su, J. Kang, J. Fan, R. A. Levine, and X. Yan. Facilitating score
and causal inference trees for large observational studies. The
Journal of Machine Learning Research, 13(1):2955–2994, 2012.

[37] L. Tang, R. Rosales, A. Singh, and D. Agarwal. Automatic ad format
selection via contextual bandits. In Proceedings of CIKM, pages
1587–1594. ACM, 2013.

[38] P. Wang, Y. Liu, M. Meytlis, H.-Y. Tsao, J. Yang, and P. Huang. An
efficient framework for online advertising effectiveness measurement
and comparison. Proceedings of WSDM, 2014.

[39] P. Wang, M. Traskin, and D. S. Small. Robust inferences from a
before-and-after study with multiple unaffected control groups.
Journal of Causal Inference, pages 1–26, 2013.


